Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow xy=63\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;63\right);\left(3;21\right);\left(7;9\right);\left(-63;-1\right);\left(-21;-3\right);\left(-9;-7\right)\right\}\)
Ta có:\(\frac{x}{y}=\frac{10}{9}\Rightarrow\frac{x}{y}=\frac{30}{27}\Rightarrow\frac{x}{30}=\frac{y}{27}\left(1\right)\)
\(\frac{y}{z}=\frac{3}{4}\Rightarrow\frac{y}{z}=\frac{27}{36}\Rightarrow\frac{y}{27}=\frac{z}{36}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y+z}{30-27+36}=\frac{78}{39}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{30}=2\\\frac{y}{27}=2\\\frac{z}{36}=2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Đặt : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=k\) \(\Rightarrow x=8k\); \(y=12k\) ; \(z=15k\)
\(x+y+z=875\Rightarrow8k+12k+15k=875\Rightarrow35k=875\Rightarrow k=25\)
Do đó :
\(\frac{x}{8}=25\Rightarrow x=25.8=200\)
\(\frac{y}{12}=25\Rightarrow y=25.12=300\)
\(\frac{z}{15}=25\Rightarrow z=25.15=375\)
Vậy ......
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x+y+z=875\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{875}{35}=25\)
\(\hept{\begin{cases}\frac{x}{8}=25\Rightarrow x=25.8=200\\\frac{y}{12}=25\Rightarrow y=25.12=300\\\frac{z}{15}=25\Rightarrow z=25.15=375\end{cases}}\)
Vậy x = 200; y = 300; z = 375
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)\(\Leftrightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\Leftrightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x-y+z}{10-15+12}=-\frac{49}{7}=-7\)
\(\Rightarrow x=-7.10=-70\)
\(y=-7.15=-105\)
\(z=-7.12=-84\)
a: \(\dfrac{-4}{8}=\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}\)
=>\(\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}=\dfrac{-1}{2}\)
=>\(\left\{{}\begin{matrix}x=\left(-10\right)\cdot\dfrac{\left(-1\right)}{2}=5\\y=\dfrac{-7\cdot2}{-1}=14\\z=\dfrac{-24\cdot\left(-1\right)}{2}=\dfrac{24}{2}=12\end{matrix}\right.\)
b: \(\dfrac{-3}{6}=\dfrac{x}{-2}=\dfrac{-18}{y}=\dfrac{-z}{24}\)
=>\(\dfrac{x}{-2}=\dfrac{-18}{y}=\dfrac{z}{-24}=\dfrac{-1}{2}\)
=>\(\dfrac{x}{2}=\dfrac{18}{y}=\dfrac{z}{24}=\dfrac{1}{2}\)
=>\(x=2\cdot\dfrac{1}{2}=1;y=18\cdot\dfrac{2}{1}=36;z=\dfrac{24}{2}=12\)
Ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta được :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
Vậy x= 16 ; y = 24 ; z= 30