Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình là:
a/ Theo đề ta có:
x/3=y/4 và x+y=14
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=x+y=3+4=14/7=2
Từ x/3=2=>x=2.3=6
Từ y/4=2>y=2.4=8
Vậy x=6 và y=8.
b/
Theo đề ta có:
a/7=b/9 và 3a-2b=30
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/7=b/9=3a/21=2b/18=3a-2b/21=18=30/3=10
Từ a/7=10=>a=10.7=70
Từ b/9=10=>b/10.9=90
Vậy a=70 và b=90.
c/
Theo đề ta có:
x/3=y/4=z/5 và x-y+z=20
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
x/3=y/4=z/5=x-y+z/3-4=5=20/4=5
Từ x/3=5=>x=5.3=15
Từ y/4=5=>y=5.4=20
Từ z/5=5=>z=5.5=25
Vậy x=15,y=20 và z=25
d/
Theo đề ta có:
a/4=b/7=c/10 và 2a+3b+4c=69
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
a/4=b/7=c/10=2a/8=3b/21=4c/40=2a+3b+4c/8+21+40=69/69=1
Từ a/4=1=>a=1.4=4
Từ b/7=1=>b=1.7=7
Từ c/10=1=>c=1.10=10
Vậy a=4,b=7 và c=10
a) x=6 y=8
b) a=70 b=90
c) x=15 y=20 z=25
d) a=4 b=7 c=10
bạn kiểm tra lại giúp mk xem câu nào sai chứ mk ko chắc đúng 100% đâu. (hơi mất tự tin sau khi nhìn điểm số ý mà)
_HT_
x , y TLT với 4 , 7
=> x/4 = y/7 =>x/12 = y/21 (1)
y , z TLN với 5 , 3
=> y.5=z.3
=> y/3=z/5 =>y/21 = z/35 (2)
Từ 1 và 2 => x/12 =y/21 =z/35 = 2x/24
Áp dụng tính chất …
x/12 =y/21 =z/35 = 2x/24 = 2z-y+z/24-21+35 = 114/38=3
=> x=36 ; y=63 ; z=105
x tỉ lệ thuận với y theo hệ số tỉ lệ k=0,5 nên x=0,5y
z tỉ lệ thuận với y theo hệ số tỉ lệ là k=8/3 nên z=8/3y
=>\(\dfrac{x}{z}=\dfrac{1}{2}:\dfrac{8}{3}=\dfrac{1}{2}\cdot\dfrac{3}{8}=\dfrac{3}{16}\)
=>x=3/16z
=>z=16/3x
=>z và x tỉ lệ thuận với hệ số tỉ lệ là k=16/3
Ta có \(\frac{x}{5}=\frac{y}{9}=\frac{z}{3}\Rightarrow\frac{x}{5}=\frac{y}{9}=\frac{-z}{-3}\)
\(\Rightarrow\frac{x}{5}=\frac{x+y-z}{5+9-3}=\frac{x+\left(y-z\right)}{11}=\frac{x+18}{11}\)
\(\Rightarrow\frac{x}{5}=\frac{x+18}{11}\Rightarrow11x=5x+90\Rightarrow x=15\)
\(\Rightarrow\frac{y}{9}=\frac{15}{5}\Rightarrow y=27\); \(\frac{z}{3}=3\Rightarrow z=9\)
Vậy \(x=15;y=27;z=9\)
\(x\)và \(y\)tỉ lệ thuận với \(2\)và \(5\)nên \(\frac{x}{2}=\frac{y}{5}\).
\(y\)và \(z\)tỉ lệ nghịch với \(3\)và \(4\)nên \(\frac{y}{4}=\frac{z}{3}\).
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{y}{4}=\frac{z}{3}\end{cases}}\Leftrightarrow\frac{x}{8}=\frac{y}{20}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{20}=\frac{z}{15}=\frac{x-y+z}{8-20+15}=\frac{36}{3}=12\)
\(\Leftrightarrow\hept{\begin{cases}x=12.8=96\\y=12.20=240\\z=12.15=180\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{12}=\dfrac{z}{1}=\dfrac{x-y}{3-12}=\dfrac{18}{-9}=-2\)
Do đó: x=-6; y=-24; z=-2