K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Giải:

Ta có:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

Từ trên suy ra \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

+) \(\frac{x}{8}=2\Rightarrow x=16\)

+) \(\frac{y}{12}=2\Rightarrow y=24\)

+) \(\frac{z}{15}=2\Rightarrow z=30\)

Vậy x = 16; y = 24; z = 30

 

17 tháng 8 2016

Theo đề bài, ta có: 

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x+y-z=10

\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\) và x+y-z=10

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

  • \(\frac{x}{8}=2.8=16\)
  • \(\frac{y}{12}=2.12=24\)
  • \(\frac{z}{15}=2.15=30\)

Vậy x=16,y=24,z=30.

hihi ^...^ vui ^_^

19 tháng 10 2017

cách giải chi tiết nè bạn j đó ơi
ta có: x/2=y/3;y/4=z/5 và x+y-z=10
x/2=y/3=>x/8=y/12 1
y/4=z/5=>y/12=z/15 2
Từ 1, 2=> x/8=y/12=z/15
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
Ta có:
x/8=2=>x=2.8=16
y/12=2=.=>y=2.12=24
z/15=2=>z=2.15=30
Vậy x=16;y=24;z=30
(Bài này mình chắc đúng luôn)

10 tháng 7 2018

Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vax+y-z=10\)0

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left[1\right]\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left[2\right]\)

\(Tu1va2\Rightarrow:\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Leftrightarrow\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=24\)

\(\frac{z}{15}=2\Rightarrow z=30.Vayx=16;y=24;z=30\)

3 tháng 9 2016

mình sẽ đơn giản cách giải ấy cho cậu

cậu lần lượt cộng các vế trái và xế phải lại thì ta sẽ được (x + y + z)(x + y + z) = -5 + 9 + 5

(x + y + z)2 = 9

chắc bạn học qua lũy thừa rồi nhỉ, thì ta sẽ có được 9 = 32 hoặc 9 = (-3)2

vậy có 2 trường hợp hoặc (x + y + z) = 3 hoặc (x + y + z) = -3

với (x + y + z) = 3 thì thay vào x (x + y + z) = -5 => 3x = -5 => x = \(\frac{-5}{3}\)

tương tự ,cậu thay (x + y + z) = 3 vào vao 2 biểu thức còn lại ta sẽ được y = 3, z = \(\frac{5}{3}\)

Và trường hợp còn lại (x + y + z) = -3  cậu cũng thay lần lượt vào 3 biểu thức trên, ta sẽ suy ra được

x = \(\frac{5}{3}\) ; y = -3 ; z= \(\frac{-5}{3}\)

vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\) thế nhé, mình lười viết đầy đủ phần trên cho nên neesuko hiểu cứ hỏi mình

3 tháng 9 2016

Sory mk nam nay moi len lop 6 

16 tháng 9 2017

Phan Đăng Nguyên bn lần lượt cộng 2 vế lại với nhau ta được (x+y+z)(x+y+z)=-5+9+5 (x+y+z)2 = 9

9=32 hoặc 9=(-3)2

Vậy có 2 trường hợp hoặc (x+y+z)=-5=>x = \(\frac{5}{3}\)

Tương tự, thay vào (x+y+z)=3 vào 2 biểu thức còn lại ta sẽ đc y=3, z=\(\frac{5}{3}\)

Trường hợp còn lại (x+y+z)=-3 thay lần lượt vào 3 biểu thứ trên, ta sẽ suy ra đc \(x=\frac{5}{3};y=-3;z=\frac{-5}{3}\)

Vậy \(\orbr{\begin{cases}x=\frac{-5}{3};y=3;z=\frac{5}{3}\\x=\frac{5}{3};y=-3;z=\frac{-5}{3}\end{cases}}\)

16 tháng 9 2017

tìm các số hữu tỉ x,y,z biết rằng:x(x+y+z)=-5;y(x+y+z)=9;z(x+y+z)=5

12 tháng 7 2015

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

suy ra: \(\frac{x}{8}=2\Rightarrow x=2.8=16\)

\(\frac{y}{12}=2\Rightarrow y=2.12=24\)

\(\frac{z}{15}=2\Rightarrow z=2.15=30\)

1 tháng 7 2021

Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\) => \(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

1 tháng 7 2021

\(\frac{x}{2}=\frac{y}{3}\)     \(\left(\text{*}\right)\)

\(\frac{y}{4}=\frac{z}{5}\)       \(\left(\text{*}\text{*}\right)\)

\(x+y-z=10\)     \(\left(\text{*}\text{*}\text{*}\right)\)

\(\left(\text{*}\right)\)\(\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)

\(\left(\text{*}\text{*}\right)\)\(\Leftrightarrow5y=4z\Leftrightarrow z=\frac{5y}{4}\)  

Cả (*) và (**) thế vào (***)

\(\frac{2y}{3}+y-\frac{5y}{4}=10\Leftrightarrow\frac{5y}{12}=10\Leftrightarrow y=24\)

\(\Leftrightarrow x=16;z=30\)

Vậy ...

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó: x=16; y=24; z=30

8 tháng 6 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)

Từ (1) và (2) suy ra\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow x=2.8=16\)

\(y=2.12=24\)

\(z=2.15=30\)

Vậy x=16;y=24;z=30