K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2023

Giả sử 3 số cần tìm là x<y<z

=> y=x+1; z=x+2

Theo đề bài

xy+yz+xz=242

=> x(x+1)+(x+1)(x+2)+x(x+2)=242

<=> x2+x+x2+3x+2+x2+2x=242

<=>3x2+6x-240=0

Giải PT bậc 2 tìm được x từ đó suy ra y và z

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

1 tháng 8 2019

#)Giải :

Giả sử  \(p^3+\frac{p-1}{2}\) là tích của hai số tự nhiên liên tiếp 

\(\Rightarrow p^3+\frac{p-1}{2}=a\left(a+1\right)\Rightarrow2p\left(2p^2+1\right)=\left(2a+1\right)^2+1\)

Nếu \(p=3\Rightarrow p^3+\frac{p-1}{2}=3^3+\frac{3-1}{2}=27+1=28\left(ktm\right)\)

Nếu \(p\ne3\Rightarrow2p^2+1⋮3\Rightarrow\left(2a+1\right)^2+1⋮3\Rightarrow\left(2a+1\right)^2\div3\) dư 2 (mâu thuẫn)

\(\Rightarrowđpcm\)

3 tháng 8 2019

cái cuối là chia 3 dư 1 chớ sao dư 2 vậy bạn

25 tháng 2 2020

Ta có : \(3y^2+1=4x^2\)

\(\Leftrightarrow3y^2=4x^2-1\)

\(\Leftrightarrow3y^2=\left(2x+1\right)\left(2x-1\right)\)

Mà : \(2x+1\) và \(2x-1\) nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\)

TH 1 : \(\hept{\begin{cases}2x-1=3m^2\\2x+1=n^2\end{cases}}\). Ta có : \(n^2=3m^2+2\equiv2\left(mod3\right)\) ( loại )

TH 2 : \(\hept{\begin{cases}2x-1=m^2\\2x+1=3n^2\end{cases}}\) . Dễ thấy m lẻ \(\Rightarrow m=2k+1\)

Khi đo s: \(2x-1=\left(2k+1\right)^2\) 

\(\Rightarrow x^2=k^2+\left(k+1\right)^2\) ( đpcm )

25 tháng 2 2020

Tại sao 2x+1 và 2x-1 lại nguyên tố cùng nhau vậy bạn?

7 tháng 8 2018

Cho 1 đa giác đều có 2017 đỉnh. Người ta ghi lên mỗi đỉnh của đa giác số 1 hoặc số 2 biết rằng có 1 .......

Mk xung phong phiên dịch cái đề cho dễ đọc thôi !

7 tháng 8 2018

mày nói cái đếch gì thé