\(\ne\)0, biết \(\frac{x}{y}=\frac{y}{z}=\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

Hình như đề không đúng. Cô sửa đề luôn nhé!

\(x^{2018}-y^{2018}=0\)

Với x +y + z  khác 0.

Áp dụng dãy tỉ số bằng nhau ta có: 

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{x+y+z}=1\)=> x = y = z 

Ta có: \(x^{2018}-y^{2019}=0\)

<=> \(x^{2018}-x^{2019}=0\)

<=> \(x^{2018}\left(1-x\right)=0\)

<=>  1- x = 0 ( vì x khác 0)

<=>  x = 1

Vậy x = y = z = 1.

3 tháng 1 2018

Theo tính chất của dãy tỷ số bằng nhau, ta có : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1.\) Suy ra  x = y = z .

mặt khác, theo giả thiết:   x2017 = y2005  Nên   x = y = 1. Vì :

            - Nếu  x = y > 1  :      x2017> x2005 = y2005

            - Nếu  x = y < 1 thì  :     x2017 < x2005 = y2005 

Vậy x = y = z = 1

24 tháng 10 2018

1) Tìm x

\(2^x+2^{x+4}=544\)

\(\Leftrightarrow2^x\left(1+2^4\right)=544\)

\(\Leftrightarrow2^x.17=544\)

\(\Leftrightarrow2^x=32=2^5\)

<=>x=5

2) \(\frac{x}{z}=\frac{z}{y}\Rightarrow\hept{\begin{cases}\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x^2+z^2}{z^2+y^2}\\z^2=xy\end{cases}}\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{z^2}{y^2}=\frac{xy}{y^2}=\frac{x}{y}\)

24 tháng 10 2018

c)Câu hỏi của Hoàng Nhật Mai - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo bài làm ở link này nhé!!! Chúc bạn học tốt!!!

19 tháng 2 2017

a) \(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\\= (x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+2019\\=x^2(x+y-2)-y(x+y-2)+(x+y-2)+2019\\=x^2.0-y.0+0+2019=2019\)

19 tháng 2 2017

c) +) Với \(x + y + z = 0\) thì \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{(-z)}{y} \cdot \dfrac{(-x)}z \cdot \dfrac{(-y)}x = -1\)

+) Với \(x + y + z \ne 0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{y+z-x}x = \dfrac{z+x-y}y = \dfrac{x+y-z}z = \dfrac{y+z-x+z+x-y+x+y-z}{x+y+z} = \dfrac{x+y+z}{x+y+z} =1\)
Ta có \(\dfrac{y+z-x}x = 1 \iff y+z-x = x \iff y+z = 2x\)
Tương tự : \(z+x = 2y ; x + y = 2z\)
Kh đó \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{2z}{y} \cdot \dfrac{2x}z \cdot \dfrac{2y}x = 8\)