Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì x^y+y^x sẽ là hai vế giống nhau về kết quả
ta có x = 2 ,y = 4
==> 2^4 + 4^2 = z (z là kết quả)
=16 +16 = 32
==> x = 2 ,y=4 ,z =32
Bài toán không có lời giải vì không có số nguyên tố âm nên không có kết quả cho bài toán này
Ta có:
\(x\) và \(x^5\) có cùng tính chẵn - lẻ (cùng tính chẵn - lẻ nghĩa là nếu \(x\) lẻ thì \(x^5\) lẻ, còn nếu \(x\) chẵn thì \(x^5\) cũng chẵn luôn)
\(y\) và \(y^3\) có cùng tính chẵn - lẻ
\(\left(x+y\right)\) và \(\left(x+y\right)^2\) có cùng tính chẵn - lẻ
Vậy \(x^5+y^3-\left(x+y\right)^2\) và \(x+y-\left(x+y\right)\) có cùng tính chẵn - lẻ
Trong mọi trường hợp, dù \(x\) và \(y\) lẻ hay chẵn thì kết quả luôn là số chẵn\(\Rightarrow3z^3\) là số chẵn\(\Rightarrow z\) phải là số chẵn mà 2 là số nguyên tố chẵn duy nhất\(\Rightarrow z=2\)
\(\Rightarrow x^5+y^3-\left(x+y\right)^2=3\cdot2^3=24\)
Chỉ khi \(x=y=2\) thì phương trình trên mới hợp lí.
Vậy \(x=y=2\)
Đáp số: \(x=y=z=2\)
\(x\) + y = 2; ⇒ y = 2 - \(x\);
y + z = 3 ⇒ y = 3 - z
⇒ 2 - \(x\) = 3 - z ⇒ \(x\) = 2 - 3 + z ⇒ \(x\) = -1 + z
Thay \(x\) = -1 + z vào biểu thức z + \(x\) = -5 ta có:
z - 1 + z = -5
2z = -5 + 1 ⇒ 2z = -4 ⇒ z = -4: 2 ⇒ z = -2
Thay z = -2 vào biểu thức \(x\) = -1 + z ta có \(x\) = -1 -2 = -3
Thay z = -2 vào biểu thức y = 3 - z ta có: y = 3 - (-2) = 5
Từ :
\(x^3+y^3+z^3=x+y+z+2017\) \(\implies\) \(\left(x^3-x\right).\left(y^3-y\right).\left(z^3-z\right)=2017\left(1\right)\)
Chứng minh được :\(x^3-x=x.\left(x-1\right).\left(x+1\right)\)
\(y^3-y=y.\left(y-1\right).\left(y+1\right)\)
\(z^3-1=y.\left(y-1\right).\left(y+1\right)\)
Vì x, y, z là các số nguyên nên
\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3
Do đó vế trái của (1) luôn chia hết cho 3 mà 2017 không chia hết cho 3
Vậy không có số nguyên x,y,z nào thỏa mãn ycbt
\(x\) + y = 2 ⇒ y = 2 - \(x\);
y + z = 3 ⇒ y = 3 - z ⇒ 2 - \(x\) = 3 - z ⇒ \(x\) = 3 - z - 2 ⇒ \(x\) = -1+ z
Thay \(x\) = - 1 + z vào biểu thức \(x\) + z = - 5 ta có: -1 + z + z = -5
⇒ 2z = 1 - 5 ⇒ 2z = -4 ⇒ z = -4: 2 ⇒ z = - 2
Thay z = - 2 vào biểu thức \(x\) = -1 + z ta có: \(x\) = -1 - 2 = -3
Thay \(x\) = - 3 vào biểu thức: y = 2 - \(x\) ta có: y = 2 - (-3) = 5
Vậy các số nguyên \(x\); y;z thỏa mãn đề bài là:
(\(x\); y; z) = (-3; 5; -2)
các bạn giai jùm mình nha
đúng mình k cho