Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p^q+q^p=r
Ta thấy r chỉ có thể là 1 số lẻ.
Mà một số lẻ = số lẻ + số chẵn.
Vậy p^q hoặc q^p là số chẵn.
Mà số lẻ mũ bao nhiêu thì cũng là số lẻ.
Vậy p hoặc q sẽ là một số chẵn.
Mà p,q,r là số nguyên tố nên p hoặc q sẽ = 2
Nếu p = 2 thì ta có 2^q + q^2 =r
Tớ chỉ giải được đến đây thôi nhé .
Vai trò của p,q,r là như nhau nên giả sử như sau:p<q<r
Xét p=2, ta tìm được 3 số là:2;3;5(ko thỏa mãn)
Xét p=3,ta tìm được 3 số là:3;5;7(thỏa mãn)
Xét p>3
Bổ đề:Mọi số nguyên tố>3nên xem bình phương lên thì luôn chia 3 dư 1 thật vậy các số nguyên tố lớn hơn 3 nên có dạng:3k+1hoặc 3k+2
Nếu có dạng 3k+1,ta có: (3k+1)2=9k2+6k+1_1(mod3)
Nếu có dạng 3k+2 ,ta có:(3k+2)2=9k2+12k+4_1 (mod3)
Vậy nếu p>3 thì các số q,r>3 nên khi bình phương lên thì đều dư 1
==>p2+q2+r2=0(mod3)
Vậy ta có:(3,5,7)và các hoán vị
Chào bạn, Ta sẽ cm bài toán này như sau
-Vì p ; q là các số nguyên tố lớn hơn 3 nên p;q có hai dạng là: \(3k\pm1\)
- Khi đó: \(p^2;q^2\equiv1\left(mod3\right)\Rightarrow p^2-q^2\equiv0\left(mod3\right)hay\)
\(p^2-q^2⋮3\left(1\right)\)
Mặt khác ta lại thấy : p ; q là các số nguyên tố lớn hơn 3\(\Rightarrow\)p ; q lẻ \(\Rightarrow p^2;q^2l\text{ẻ}\)\(\Rightarrow p^2-q^2ch\text{ẵn}\)\(\Rightarrow p^2-q^2⋮2\left(2\right)\)
Từ (1) ; (2) và (2;3)=1 ta suy ra
\(p^2-q^2⋮6\left(\text{đ}pcm\right)\)
Cảm ơn bạn đã theo dõi câu trả lời
p^q+q^p=r
Ta có:p^q+q^p=r suy ra r>p^q và r>q^p
Cho p^q là số chẵn suy ra p là số chẵn mà p nguyên tố suy ra p=2
Ta có: 2^q+q^2=r
p chẵn suy ra y lẻ ma y nguyên tố suy ra y là số nguyên tố lớn hơn hoặc bằng 3
Ta cho: p=2; q=3; r=17
q=3 suy ra r= 2^3+3^2=17(thỏa)
q>3 suy ra 2^q chia 3 dư 2 va q^2 chia 3 dư 1
Suy ra r chia hết cho 3(vô lí) vì r là số nguyên tố
Vậy(p;q;r)=(2;3;17);(3;2;17)
p^q+q^p=r
Ta có:p^q+q^p=r suy ra r>p^q và r>q^p
Cho p^q là số chẵn suy ra p là số chẵn mà p nguyên tố suy ra p=2
Ta có: 2^q+q^2=r
p chẵn suy ra y lẻ ma y nguyên tố suy ra y là số nguyên tố lớn hơn hoặc bằng 3
Ta cho: p=2; q=3; r=17
q=3 suy ra r= 2^3+3^2=17(thỏa)
q>3 suy ra 2^q chia 3 dư 2 va q^2 chia 3 dư 1
Suy ra r chia hết cho 3(vô lí) vì r là số nguyên tố
Vậy(p;q;r)=(2;3;17);(3;2;17)
+ Với p = 2 thì p - 1 = 2 - 1 = 1, không là số nguyên tố, loại
+ Với p = 3 thì p - 1 = 3 - 1 = 2; p + 2 = 3 + 2 = 5, đều là số nguyên tố, chọn
+ Với p nguyên tố > 3 => p lẻ => p - 1 chẵn => p - 1 chia hết cho 2
Mà 1 < 2 < p - 1 => p - 1 là hợp số, loại
Vậy p = 3
+ Với p = 2 thì p - 1 = 2 - 1 = 1, không là số nguyên tố, loại
+ Với p = 3 thì p - 1 = 3 - 1 = 2; p + 2 = 3 + 2 = 5, đều là số nguyên tố, chọn
+ Với p nguyên tố > 3 => p lẻ => p - 1 chẵn => p - 1 chia hết cho 2
Mà 1 < 2 < p - 1 => p - 1 là hợp số, loại
Vậy p = 3
vì r là số nguyên tố nên r là số lẻ ( r = 2 thì pt vô nghiệm)
=> p = 2 . Nếu q > 3 thì VT:3 => q = 3