Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 góc của tam giác tại A ; B ; c lần lượt là a ; b và c
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
ÁP dụng tc of dãy ti số bằng nhau ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{180}{12}=15\)
\(\Rightarrow\begin{cases}a=45^0\\b=60^0\\c=75\end{cases}\)
giải: gọi số đo các góc \(\widehat{A},\widehat{B},\widehat{C}\) lần lượt là x,y,z
theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5};x+y+z=180^o\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+y+z}{3+4+5}=\frac{180}{12}=15\)
vì \(\frac{x}{3}=15\Rightarrow x=15.3=45\Rightarrow x=45\)
\(\frac{y}{4}=15\Rightarrow y=15.4=60\Rightarrow y=60\)
\(\frac{z}{5}=15\Rightarrow z=15.5=75\Rightarrow x=75\)
vậy số đo \(\widehat{A}=45^o,\widehat{B}=60^o,\widehat{C}=75^o\)
gọi số hs trung bình la a, hs giỏi là b, hs khá là c
theo bài ra ta có: a = 2c => \(\frac{a}{2}=\frac{c}{1}\) => \(\frac{a}{4}=\frac{c}{2}\) ( 1)
b = \(\frac{c}{2}\) (2)
từ 1 và 2 => \(\frac{a}{4}=\frac{c}{2}=\frac{b}{1}\) và a+b+c = 42
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{4}=\frac{c}{2}=\frac{b}{1}=\frac{a+c+b}{4+2+1}=\frac{42}{7}=6\)
=> a= 24
b = 6
c = 12
vậy có 24 hs trung bình, 6 hs giỏi và 12 hs khá
Gọi số học sinh \(\text{giỏi; khá; trung bình}\) của lớp đó lần lượt là \(a;b;c\) \(\left(a;b;c\in N\text{*}\right)\) \(\left(\text{học sinh}\right)\)
Theo bài ra ta có : \(a+b+c=42\)
\(2b=c\Rightarrow b=\dfrac{c}{2}\) \(\left(1\right)\)
\(a=\dfrac{1}{2}b\Rightarrow a=\dfrac{b}{2}\Rightarrow2a=b\Rightarrow\dfrac{a}{\dfrac{1}{2}}=b\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra : \(\dfrac{a}{\dfrac{1}{2}}=b=\dfrac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{a}{\dfrac{1}{2}}=b=\dfrac{c}{2}=\dfrac{a+b+c}{\dfrac{1}{2}+1+2}=\dfrac{42}{\dfrac{7}{2}}=12\)
\(\dfrac{a}{\dfrac{1}{2}}=12\Rightarrow a=6\\ \)
\(b=12\\ \)
\(\dfrac{c}{2}=12\Rightarrow c=24\)
\(\text{Vậy }a=6\\ b=12\\ c=24\)
cho bốn chữ số 2,3,4,1 a, viết tất cả các số khác nhau.b, tính tổng các số vừa viết một cách nhanh nhất
Minh viet khong dau ban chiu nha:
Goi so hoc sinh 3gioi, kha, trung binh lan luot la a;b;c(0<a;b;c<42)
theo bai ra,ta co:c=2b;a=1/2b
suy ra a:b:c=1:2:4 va a+b+c=42
Ap dung cong thuc day ti so bang nhau ta co:
a/1=b/2=c/4=a+b+c/1+2+4=42/7=6
Suy ra:a=6(hs)
b/2=6 suy ra b=2*6=12
c/4=6 suy ra c=6*4=24
Vay...
mình làm bài này rùi nhưng bây h mình buồn ngủ lắm,để mai mình làm cho nha ^^^^
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\left(đpcm\right)\)
Vì x tỉ lệ thuận với y theo hệ số tỉ lệ a nên x = y.a (1)
y tỉ lệ thuận với z theo hệ số tỉ lệ b nên y = z.b (2)
z tỉ lệ thuận với t theo hệ số tỉ lệ c nên z = t.c (3)
Từ (1); (2) và (3) => x = t.c.b.a
=> \(t=\frac{x}{c.b.a}=x.\frac{1}{c.b.a}\)
Vậy t tỉ lệ thuận với x và hệ số tỉ lệ là \(\frac{1}{c.b.a}\)
Gọi ba số đó là a,b,c ta có :
\(\frac{a}{2}+\frac{b}{5}+\frac{c}{3}=\frac{-360}{10}=-36\)
\(\Leftrightarrow\frac{a}{2}=-36\Rightarrow a=-72\)
\(\Leftrightarrow\frac{b}{5}=-36\Rightarrow b=-180\)
\(\Leftrightarrow\frac{c}{3}=-36\Rightarrow c=-108\)
Gọi ba số cần tìm lần lượt là:a;b;c
Vì tổng ba số là -360. Suy ra:a+c=-360
Mà ba số đó tỉ lệ với 2,5,3
Do đó:\(\frac{a}{2}=\frac{b}{5}=\frac{c}{3}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{2}=\frac{b}{5}=\frac{c}{3}=\frac{a+b+c}{2+5+3}=\frac{-360}{10}=-36\)
\(\Rightarrow\begin{cases}\frac{a}{2}=-36\\\frac{b}{5}=-36\\\frac{c}{3}=-36\end{cases}\)\(\Rightarrow\)\(\begin{cases}a=-72\\b=-180\\c=-108\end{cases}\)
Vậy a=-72;b=-180;c=-108