K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2015

Ta có : \(3\left(a+b\right)=8\left(b+c\right)=12\left(c+a\right)\)

\(\Rightarrow\frac{3\left(a+b\right)}{24}=\frac{8\left(b+c\right)}{24}=\frac{12\left(c+a\right)}{24}\)

\(\Rightarrow\frac{a+b}{8}=\frac{b+c}{3}=\frac{c+a}{2}=\frac{2\left(a+b+c\right)}{8+3+2}=\frac{2.26}{13}=4\)

                           Vậy :a=14      ; b=8               ;  c= -6 

13 tháng 6 2015

ta có:

\(3\left(a+b\right)=8\left(b+c\right)=12\left(c+a\right)\)

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:\(\frac{a+b}{\frac{1}{3}}=\frac{b+c}{\frac{1}{8}}=\frac{c+a}{\frac{1}{12}}=\frac{a+b+b+c+c+a}{\frac{1}{3}+\frac{1}{8}+\frac{1}{12}}=\frac{2\left(a+b+c\right)}{2\left(\frac{1}{3}+\frac{1}{8}+\frac{1}{12}\right)}=\frac{2\cdot26}{2\cdot\frac{13}{24}}=48\)

=> \(3\left(a+b\right)=8\left(b+c\right)=12\left(c+a\right)=48\)

........

20 tháng 7 2015

theo đề bài: 3(a +b) = 8.( b + c) = 12.(c +a) => \(\frac{3\left(a+b\right)}{24}=\frac{8\left(b+c\right)}{24}=\frac{12\left(c+a\right)}{24}\)=> \(\frac{a+b}{8}=\frac{b+c}{3}=\frac{c+a}{2}\)

Theo tc dãy tỉ số bằng nhau => \(\frac{a+b}{8}=\frac{b+c}{3}=\frac{c+a}{2}=\frac{a+b+b+c+c+a}{8+3+2}=\frac{2\left(a+b+c\right)}{13}=\frac{2.26}{13}=4\)

=> a + b = 4.8 = 32; b +c = 4.3 = 12; c+a = 4.2 = 8

a = (a + b +c) - (b + c) = 26 - 12 = 14

b = 26 - 8 = 18

c = 26 - 32 = -6

20 tháng 7 2015

Theo bài ra ta có :

      \(\frac{a+b}{\frac{1}{3}}=\frac{b+c}{\frac{1}{8}}=\frac{a+c}{\frac{1}{12}}\) và a + b +c = 26 

  Áp dụng dãy tỉ số bằng nhau ta có:

           \(\frac{a+b}{\frac{1}{3}}=\frac{b+c}{\frac{1}{8}}=\frac{c+a}{\frac{1}{12}}=\frac{2\left(a+b+c\right)}{\frac{1}{3}+\frac{1}{8}+\frac{1}{12}}=\frac{2.16}{\frac{13}{24}}=\frac{52}{\frac{13}{24}}=96\)

=> a + b = 1/3 . 96 = 32 => c = ( a+ b +c ) - ( a+ b) = 26 - 32 = -6

=>  b + c = 1/8 . 96 = 12 => a = ( a + b +c ) - ( b + c) = 26 - 12 = 14 

=> a + c = 1/12 . 96 = 8 => b = ( a + b + c) - ( a+ c) = 26 - 8 = 18 

19 tháng 12 2016

Giải:
Ta có: \(3\left(a+1\right)=8\left(b+2\right)=12\left(c+3\right)\)

\(\Rightarrow\frac{3\left(a+1\right)}{24}=\frac{8\left(b+2\right)}{24}=\frac{12\left(c+3\right)}{24}\)

\(\Rightarrow\frac{a+1}{8}=\frac{b+2}{3}=\frac{c+3}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a+1}{8}=\frac{b+2}{3}=\frac{c+3}{2}=\frac{a+1+b+2+c+3}{8+3+2}=\frac{\left(a+b+c\right)+\left(1+2+3\right)}{13}=\frac{23+6}{13}=2\)

+) \(\frac{a+1}{8}=2\Rightarrow a=15\)

+) \(\frac{b+2}{3}=2\Rightarrow b=4\)

+) \(\frac{c+3}{2}=2\Rightarrow c=1\)

Vậy bộ số \(\left(a;b;c\right)\)\(\left(15;4;1\right)\)

19 tháng 12 2016

Theo đề ta có:

3.(a+1) = 8.(b+2) = 12.(c+3) => \(\frac{3.\left(a+1\right)}{24}=\frac{8.\left(b+2\right)}{24}=\frac{12.\left(c+3\right)}{24}\)

=> \(\frac{a+1}{8}=\frac{b+2}{3}=\frac{c+3}{2}\)

Theo tính chất của dãy tỉ số bằng nhau. Ta có:

\(\frac{a+1}{8}=\frac{b+2}{3}=\frac{c+3}{2}\)\(=\frac{a+1+b+2+c+3}{8+3+2}=\frac{a+b+c+1+2+3}{13}=\frac{20+6}{13}=\frac{26}{13}=2\)

=> \(\frac{a+1}{8}=2\) => \(a+1=16\) => \(a=15\)

=> \(\frac{b+2}{3}=2\) => \(b+2=6\) => \(b=4\)

=> \(\frac{c+3}{2}=2\) => \(c+3=4\) => \(c=1\)

Vậy \(a=15\)

\(b=4\)

\(c=1\)

1 tháng 1 2017

Ta có: a + b ; b +c ; c + a TLN với 3,8,12

=> (a + b).3 = (b + c). 8 = (c + a). 12

=> \(\frac{a+b}{\frac{1}{3}}=\frac{b+c}{\frac{1}{8}}=\frac{c+a}{\frac{1}{12}}\) và a+b+c = 26

Áp dụng tính chất dãy tỉ số bằng nhau

Ta có: \(\frac{a+b}{\frac{1}{3}}=\frac{b+c}{\frac{1}{8}}=\frac{c+a}{\frac{1}{12}}\)=\(\frac{a+b+b+c+c+a}{\frac{1}{3}+\frac{1}{8}+\frac{1}{12}}\)=\(\frac{2a+2b+2c}{\frac{13}{24}}\)=\(\frac{2.26}{\frac{13}{24}}=\frac{52}{\frac{13}{24}}=96\)

\(\frac{a+b}{\frac{1}{3}}=96\Rightarrow a+b=32\)

\(\frac{b+c}{\frac{1}{8}}=96\Rightarrow b+c=12\)

\(\frac{c+a}{\frac{1}{12}}=96\Rightarrow c+a=8\)

Ta có: a + b + c = 26

mà a + c = 8

=> b = 26 - 8 = 18

Vậy b = 18

@Nguyễn Huy Tú; @Trương Hồng Hạnh, @soyeon_Tiểubàng giải

khó quá mình đang hông biết đanng hỏi nè

1 tháng 12 2021

\(1,4a=5b\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{b-a}{4-5}=\dfrac{27}{-1}=-27\\ \Leftrightarrow\left\{{}\begin{matrix}a=-135\\b=-108\end{matrix}\right.\\ 2,\dfrac{1}{3}x=\dfrac{1}{2}y=\dfrac{1}{5}z\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{5}=\dfrac{x+2y-z}{3+4-5}=\dfrac{8}{2}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=12\\y=8\\z=20\end{matrix}\right.\\ 3,\dfrac{1}{3}a=\dfrac{1}{2}b;\dfrac{1}{5}a=\dfrac{1}{7}c\\ \Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{184}{46}=4\\ \Leftrightarrow\left\{{}\begin{matrix}a=60\\b=40\\c=84\end{matrix}\right.\)

1 tháng 12 2021

1.
undefined

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
Theo bài ra ta có:
$3a=2b; \frac{b}{4}=\frac{c}{3}$

$\Rightarrow \frac{a}{8}=\frac{b}{12}=\frac{c}{9}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{a}{8}=\frac{b}{12}=\frac{c}{9}=\frac{a+b+c}{8+12+9}=\frac{29}{29}=1$

$\Rightarrow a=8.1=8; b=12.1=12; c=9.1=9$

theo đề bài ta có :

a và b tỉ lệ nghịch với 3 và 2 

=> 3a = 2b \(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{4}=\dfrac{b}{6}\) ( 1 )

b và c tỉ lệ nghịch với 3 và 2 

=> 3b = 2c => \(\dfrac{b}{2}=\dfrac{c}{3}\Rightarrow\dfrac{b}{6}=\dfrac{c}{9}\)  ( 2 )

Từ ( 1 ), ( 2 ) => \(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{9}\Rightarrow\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}\)  và 2a + 3b - 4c = 100

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}=\dfrac{2a+3b-4c}{8+18-36}=\dfrac{100}{-10}=-10\)

\(\dfrac{a}{4}=-10\Rightarrow a=-40\)

\(\dfrac{b}{6}=-10\Rightarrow b=-60\)

\(\dfrac{c}{9}=-10=>c=-90\)

Vậy 3 số a,b,c lần lượt là -40 ; -60 ; -90