Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phân số cần tìm là a , b , c .
Vì mẫu số tỉ lệ nghịch với \(\dfrac{1}{4}\),\(\dfrac{1}{5}\),\(\dfrac{1}{6}\) nên sẽ tỉ lệ thuận với 4;5;6
=>a:b:c = \(\dfrac{5}{4}\):\(\dfrac{7}{5}\):\(\dfrac{11}{6}\) = \(\dfrac{5}{4}\).60 : \(\dfrac{7}{5}\).60 : \(\dfrac{11}{6}\).60 = 75:84:110
=>\(\dfrac{a}{75}\)=\(\dfrac{b}{84}\)=\(\dfrac{c}{110}\)
Vì tổng của chúng là\(15\dfrac{83}{120}\) nên a+b+c = \(15\dfrac{83}{120}\)=1883
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{75}\)=\(\dfrac{b}{84}\)=\(\dfrac{c}{110}\)=\(\dfrac{a+b+c}{75+84+110}\)=\(\dfrac{1883}{269}\)=7
\(\dfrac{a}{75}\)=7 => a = 75.7 = 525
\(\dfrac{b}{84}\)=7 => b = 84.7 = 588
\(\dfrac{c}{110}\)=7 => c = 110.7 = 770
Vậy 3 phân số tối giản cần tìm là 525 ; 585 ; 770 .
Gọi 3 phân số cần tìm là a/b,c/e,d/f
Theo đề ra, ta có:
\(\frac{a}{5}=\frac{c}{7}=\frac{d}{11}=k1\left(k1\ne0\right)\), suy ra a = 5.k1, c = 7.k1, d = 11.k1 và
\(\frac{b}{\frac{1}{4}}=\frac{e}{\frac{1}{5}}=\frac{f}{\frac{1}{6}}=k2\left(k2\ne0\right)\), suy ra b = 1/4.k2, e = 1/5.k2, f = 1/6.k2
Vậy \(\frac{a}{b}+\frac{c}{e}+\frac{d}{f}=\frac{20k1}{k2}+\frac{35k1}{k2}+\frac{66k1}{k2}=121.\frac{k1}{k2}=\frac{1883}{120}\)
\(\Rightarrow\) \(\frac{k1}{k2}=\frac{1883}{14520}\)
gọi 3 p/s cần tìm là a/b;c/d;e/f với a,b,c,d,e,f là các số nguyên khác 0
Ta có:
a:c:e=2:3:4 và b:d:f=1/3:1/4:1/5 và a/b+c/d+e/f=-2
Vì a:c:e=2:3:4 =>\(\frac{a}{2}=\frac{c}{3}=\frac{e}{4}=k\Rightarrow a=2k;c=3k;e=4k\) (k E N)
vì b:d:f=1/3:1/4:1/5\(\Rightarrow\frac{b}{\frac{1}{3}}=\frac{d}{\frac{1}{4}}=\frac{f}{\frac{1}{5}}=t\Rightarrow b=\frac{t}{3};d=\frac{t}{4};f=\frac{t}{5}\left(t\in N\right)\)
do đó \(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{2k}{\frac{t}{3}}+\frac{3k}{\frac{t}{4}}+\frac{4k}{\frac{t}{5}}=-2\Rightarrow\frac{2k.3}{t}+\frac{3k.4}{t}+\frac{4k.5}{t}=-2\Rightarrow\frac{6k}{t}+\frac{12k}{t}+\frac{20k}{t}=-2\)
\(\Rightarrow\frac{6k+12k+20k}{t}=-2\Rightarrow\frac{38k}{t}=-2\Rightarrow38.\frac{k}{t}=-2\Rightarrow\frac{k}{t}=-2:38=\frac{-1}{19}\)
=> \(\frac{a}{b}=6.\left(-\frac{1}{19}\right)=-\frac{6}{19};\frac{c}{d}=12.\left(-\frac{1}{19}\right)=-\frac{12}{19};\frac{e}{f}=20.\left(-\frac{1}{19}\right)=-\frac{20}{19}\)
vậy....
nhớ **** đấy
Gọi 3 p/s tối giản cần tìm là \(\frac{a}{b};\frac{c}{d};\frac{e}{f}\)
Theo bài ra ta có:\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=15\frac{83}{120}=\frac{1883}{120}\left(1\right)\)
\(a:c:e=5:7:11\Leftrightarrow\frac{a}{5}=\frac{c}{7}=\frac{e}{11}\)
Đặt các tỉ số trên=p\(\Rightarrow a=5p;c=7p;e=11p\left(2\right)\)
\(b:d:f=\frac{1}{\frac{1}{4}}:\frac{1}{\frac{1}{5}}:\frac{1}{\frac{1}{6}}=4:5:6\Leftrightarrow\frac{b}{4}=\frac{d}{5}=\frac{f}{6}\)
Đặt các tỉ số trên=q\(\Rightarrow b=4q;d=5q;f=6q\left(3\right)\)
Từ (1) và (2) và (3)
\(\Rightarrow\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{5p}{4q}+\frac{7p}{5q}+\frac{11p}{6q}=\frac{1883}{120}\)
\(\Rightarrow\frac{5}{4}.\frac{p}{q}+\frac{7}{5}.\frac{p}{q}+\frac{11}{6}.\frac{p}{q}=\left(\frac{5}{4}+\frac{7}{5}+\frac{11}{6}\right).\frac{p}{q}=\frac{1883}{120}\)
\(\Rightarrow\frac{269}{60}.\frac{p}{q}=\frac{1883}{120}\Rightarrow\frac{p}{q}=\frac{7}{2}\)
Do đó \(\frac{a}{b}=\frac{5}{4}.\frac{7}{2}=\frac{35}{8};\frac{c}{d}=\frac{7}{5}.\frac{7}{2}=\frac{49}{10};\frac{e}{f}=\frac{11}{6}.\frac{7}{2}=\frac{77}{12}\)
Gọi 3 phân số cần tìm là \(\frac{a}{b};\frac{c}{d};\frac{e}{f}\) ta có:
Theo đề bài ta có:
\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{269}{30}\) (1)
\(\frac{a}{5}=\frac{b}{7}=\frac{c}{11}=k\)=> \(a=5k;b=7k;c=11k\)(2)
\(\frac{b}{4}=\frac{d}{5}=\frac{f}{6}=h\Rightarrow b=4h;d=5h;f=6h\) (3)
Thế (2) , (3) vào (1) ta có:
\(\frac{5k}{4h}+\frac{7k}{5h}+\frac{11k}{6h}=\frac{269}{30}\)
\(\frac{k}{h}\left(\frac{5}{4}+\frac{7}{5}+\frac{11}{6}\right)=\frac{269}{30}\)
\(\frac{k}{h}.\frac{269}{60}=\frac{269}{30}\)
\(\frac{k}{h}=2\)
Vì các phân số cần tìm là phân số tối giản
=> k=2; h =1
=> Các phân số cần tìm là:
\(\frac{10}{4}=\frac{5}{2};\frac{14}{5};\frac{22}{6}=\frac{11}{3}\)
Gọi 3 phân số cần tìm là x,y,z
Vì các tử tỉ lệ với 5,7,11 và các mẫu tỉ lệ nghịch với 1/4,1/5,1/6
=> \(x:y:z=\frac{5}{4}:\frac{7}{5}:\frac{11}{6}\)
=> \(\frac{x}{\frac{5}{4}}=\frac{y}{\frac{7}{5}}=\frac{z}{\frac{11}{6}}\)
=> \(\frac{4x}{5}=\frac{5y}{7}=\frac{6z}{11}\)
=> \(\frac{4x}{5.60}=\frac{5y}{7.60}=\frac{6z}{11.60}\)
=> \(\frac{x}{75}=\frac{y}{84}=\frac{z}{110}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{75}=\frac{y}{84}=\frac{z}{110}=\frac{x+y+z}{75+84+110}=\frac{15\frac{83}{120}}{269}=\frac{7}{120}\)
\(\Rightarrow\frac{x}{75}=\frac{7}{120}\Rightarrow x=\frac{35}{8}\)
\(\frac{y}{84}=\frac{7}{120}\Rightarrow y=\frac{49}{10}\)
\(\frac{z}{110}=\frac{7}{120}\Rightarrow z=\frac{77}{12}\)
Vậy ba phân số tối giản cần tìm là 35/8, 49/10, 77/12
P/s: các mẫu tỉ lệ nghịch với 1/4,1/5,1/6 nên các mẫu tỉ lệ thuận với 4,5,6
Mk xin đính chính lại là tử số tỉ lệ với 5,7,11 chứ ko phải là tỉ lệ nghịch đâu nhé, thành thật xin lỗi các bạn mk !