\(2004^{200}\)

b) \(2003^{2004}\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2017

Vận dụng kiến thức về đồng dư thức.

27 tháng 10 2015

a)Ta thấy: 5 đồng dư với 1(mod 2)

=>52003 đồng dư với 12003(mod 2)

=>52003 đồng dư với 1(mod 2)

=>52003=2k+1

=>\(19^{5^{2003}}=19^{2k+1}\)

a)Ta thấy: 5 đồng dư với 1(mod 2)

=>52003 đồng dư với 12003(mod 2)

=>52003 đồng dư với 1(mod 2)

=>52003=2k+1

Mà 19 đồng dư với 9(mod 10)

=>19 đồng dư với -1(mod 10)

=>192 đồng dư với (-1)2(mod 10)

=>192 đồng dư với 1(mod 10)

=>(192)k đồng dư với 1k(mod 10)

=>192k đồng dư với 1(mod 10)

=>192k.19 đồng dư với 1.9(mod 10)

=>192k+1 đồng dư với 9(mod 10)

=>\(19^{5^{2003}}\) đồng dư với 9(mod 10)

=>\(19^{5^{2003}}\)có tận cùng là 9

10 tháng 1 2019

a=75

b=15

8 tháng 7 2019

MÌNH ĐANG RẤT CẦN BÀI TOÁN NÀY !!!!!

8 tháng 7 2019

Ta có \(2^{4k+2}=16^k.4\)

Mà \(16^k\)luôn tận cùng là 6

=> Các số \(...2^{4k+2}\)luôn tận cùng là 4

Tương tự : \(...3^{4k+2}\)tận cùng là 3^2=9

                   \(...4^{4k+2}\)tận cùng là 6

                  \(...5^{4k+2}\)tận cùng là 5

                  ..........................................

                 \(...9^{4k+2}\)tận cùng là 1

=> \(..2^{4k+2}+..3^{4k+2}+...+..9^{4k+2}=..4+..9+..6+..5+...+..1=...4\)

Áp dụng 

=> \(A=\left(2^2+...+9^{30}\right)+...\left(1900^{4k+2}+...+1999^{4k'+2}\right)+\left(2000^{4k''+2}+...+2004\right)^{8010}\)

        \(=...4+...5+...5+...5+...+...5+...0\) 

        \(=...9\)

   Vậy A tận cùng là 9

26 tháng 10 2016

2300có tận cùng 6

3300có tận cùng là 1

cộng lai ra 7 kết quả đó

19 tháng 10 2017

A=2^100-1

suy ra A<2^100