Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$
$\Rightarrow a=2k+1; b=3k+2; c=4k+3$
Khi đó:
$3a+3b-c=50$
$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$
$\Rightarrow 11k+6=50$
$\Rightarrow 11k=44\Rightarrow k=4$
Ta có:
$a=2k+1=2.4+1=9$
$b=3k+2=3.4+2=14$
$c=4k+3=4.4+3=19$
b/
$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$
$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$
Áp dụng TCDTSBN:
$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$
$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$
TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\) / A-3B
=\(2.\left(\frac{3}{4}\right)-5\)/ 3/4-3
=\(\frac{14}{9}\)
\(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow a=3k;b=4k\) Thay vào \(\frac{2a-5b}{a-3b}\) ta được :
\(\frac{2a-5b}{a-3b}=\frac{2.3k-5.4k}{3k-3.4k}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-12}{-9}=\frac{4}{3}\)
2a-5b/a-3b =\(\frac{2\left(\frac{a}{b}\right)-5}{\frac{a}{b}-5}\) =2(3/4)-5/3/4-5
=14/9
a)Thay \(x=\dfrac{-2}{3}\) vào\(x^3-6x^2-9x-3\):
\(\left(\dfrac{-2}{3}\right)^3-6\left(\dfrac{-2}{3}\right)^2+9.\dfrac{2}{3}-3\)
\(=\dfrac{-8}{27}-\dfrac{8}{3}+6-3\)
\(=\dfrac{-8-72}{27}+3=\dfrac{-80}{27}+3=\dfrac{1}{27}\)
b) Ta có: \(\dfrac{a}{b}=\dfrac{3}{4}\Rightarrow a=3k;b=4k\)
\(\Rightarrow\dfrac{2a-5b}{a-3b}=\dfrac{6k-20k}{3k-12k}=\dfrac{-14k}{-9k}=\dfrac{14}{9}\)
c) Có: a-b=7\(\Rightarrow a=b+7\)
Thay vào \(\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}=\dfrac{2b+21}{2b+21}+\dfrac{2b-7}{2b-7}\)
\(=1+1=2\)
Đề bài là tính giá trị của D hả ?
6a=5b => \(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{2}{2}.\frac{a}{5}=\frac{3}{3}.\frac{b}{6}\Rightarrow\frac{2a}{10}=\frac{3b}{18}\)(1)
áp dụng t/c dãy tỉ số = nhau
\(\frac{2a}{10}=\frac{3b}{18}=\frac{2a-3b}{10-18}=\frac{2a-3b}{-8}\)(2)
ta cũng có :\(\frac{a}{5}=\frac{b}{6}\Rightarrow\frac{3}{3}.\frac{a}{5}=\frac{2}{2}.\frac{b}{6}\Rightarrow\frac{3a}{15}=\frac{2b}{12}\)(3)
áp dụng t/c dãy tỉ số = nhau
\(\frac{3a}{15}=\frac{2b}{12}=\frac{3a-2b}{15-12}=\frac{3a-2b}{3}\)(4)
Từ (1);(2);(3) và 4
=>\(\frac{2a-3b}{-8}=\frac{3a-2b}{3}\)
=>\(\frac{2a-3b}{3a-2b}=\frac{-8}{3}\)
=> D=-8/3
CẢM ƠN NGUYỄN THÁI SƠN NHÉ.
NHƯNG CHO MÌNH HỎI CÓ BẠN NÀO CÓ CÁCH KHÁC VÀ NGẮN HƠN KHÔNG.CÔ GIÁO MÌNH HƯỚNG DẪN SỬ DỤNG "\(\frac{a}{5}\)=\(\frac{b}{6}\)= k"NHÉ!