K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2022

\(2x^2-x-6=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+\dfrac{3}{2}=0\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=\dfrac{-3}{2}\end{matrix}\right.\)

23 tháng 10 2021

\(\Leftrightarrow4\left(x-2\right)+3x\left(x-2\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=2\end{matrix}\right.\)

23 tháng 10 2021

4(x-2)+3x(x-2)=0

(x-2)(4+3x)=0

x=2 hoặc x=-4/3

a) Ta có: \(x^2-8x+7=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

b) Ta có: \(x^2+x-20=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)

c) Ta có: \(3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)

d) Ta có: \(3x^2-4x-7=0\)

\(\Leftrightarrow3x^2-7x+3x-7=0\)

\(\Leftrightarrow\left(3x-7\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-1\end{matrix}\right.\)

e) Ta có: \(5x^2-16x+3=0\)

\(\Leftrightarrow5x^2-15x-x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

f) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

4 tháng 7 2021

a)

\(x^2-8x+7=0\text{⇔}\text{⇔}x^2-7x-x-7=\left(x-7\right)\left(x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

Vậy nghiệm của đa thức : \(S=\left\{1;7\right\}\)

c)

\(3x^2+4x-4=0\text{⇔}3x^2+6x-2x-4=\left(3x-2\right)\left(x+2\right)=0\text{⇔}\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Vậy nghiệm của đa thức : \(S=\left\{\dfrac{2}{3};-2\right\}\)

b)

\(x^2+x-20=0⇔\left(x-4\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)

d)

\(3x^2-4x-7=0\text{⇔}\left(3x-7\right)\left(x+1\right)=0\text{⇔}\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{3}\end{matrix}\right.\)

e)

\(5x^2-16x+3\text{⇔}\left(x-3\right)\left(5x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

f)

\(x^2+3x-10=0\text{⇔}\left(x-2\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

\(\)

b: Ta có: \(B=x^2\left(11x-2\right)+x^2\left(x-1\right)-3x\left(4x^2-x-2\right)\)

\(=11x^3-2x^2+x^3-x^2-12x^3+3x^2+6x\)

\(=6x\)

27 tháng 9 2021

1,\(=4x\left(x-\dfrac{3}{2}\right)\)
2,\(=-7y^3\left[2x^2y\left(2y+x\right)+3\right]\)
3, = 4x(a-b)-6xy(a-b)
=2x(a-b)(2-3y)
4,
=3(2x+1)-(2x-5)(2x+1)
=(3-2x+5)(2x+1)
=(8-2x)(2x+1)
=2(4-x)(2x+1)
 

27 tháng 9 2021

giúp mình câu 5,6.7.8. vs ạ

 

15 tháng 9 2023

a) x³ - 64x = 0

x(x² - 64) = 0

x(x - 8)(x + 8) = 0

x = 0 hoặc x - 8 = 0 hoặc x + 8 = 0

*) x - 8 = 0

x = 8

*) x + 8 = 0

x = -8

Vậy x = -8; x = 0; x = 8

b) x³ - 4x² = -4x

x³ - 4x² + 4x = 0

x(x² - 4x + 4) = 0

x(x - 2)² = 0

x = 0 hoặc (x - 2)² = 0

*) (x - 2)² = 0

x - 2 = 0

x = 2

Vậy x = 0; x = 2

c) x² - 16 - (x - 4) = 0

(x - 4)(x + 4) - (x - 4) = 0

(x - 4)(x + 4 - 1) = 0

(x - 4)(x + 3) = 0

x - 4 = 0 hoặc x + 3 = 0

*) x - 4 = 0

x = 4

*) x + 3 = 0

x = -3

Vậy x = -3; x = 4

d) (2x + 1)² = (3 + x)²

(2x + 1)² - (3 + x)² = 0

(2x + 1 - 3 - x)(2x + 1 + 3 + x) = 0

(x - 2)(3x + 4) = 0

x - 2 = 0 hoặc 3x + 4 = 0

*) x - 2 = 0

x = 2

*) 3x + 4 = 0

3x = -4

x = -4/3

Vậy x = -4/3; x = 2

e) x³ - 6x² + 12x - 8 = 0

(x - 2)³ = 0

x - 2 = 0

x = 2

f) x³ - 7x - 6 = 0

x³ + 2x² - 2x² - 4x - 3x - 6 = 0

(x³ + 2x²) - (2x² + 4x) - (3x + 6) = 0

x²(x + 2) - 2x(x + 2) - 3(x + 2) = 0

(x + 2)(x² - 2x - 3) = 0

(x + 2)(x² + x - 3x - 3) = 0

(x + 2)[(x² + x) - (3x + 3)] = 0

(x + 2)[x(x + 1) - 3(x + 1)] = 0

(x + 2)(x + 1)(x - 3) = 0

x + 2 = 0 hoặc x + 1 = 0 hoặc x - 3 = 0

*) x + 2 = 0

x = -2

*) x + 1 = 0

x = -1

*) x - 3 = 0

x = 3

Vậy x = -1; x = -1; x = 3

Dòng cuối kết luận phải là \(\text{x }\in\text{ }\left\{-2;-1;3\right\}\) chứ ạ?

a: Ta có: \(A=-x^2+2x+5\)

\(=-\left(x^2-2x-5\right)\)

\(=-\left(x^2-2x+1-6\right)\)

\(=-\left(x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi x=1

b: Ta có: \(B=-x^2-8x+10\)

\(=-\left(x^2+8x-10\right)\)

\(=-\left(x^2+8x+16-26\right)\)

\(=-\left(x+4\right)^2+26\le26\forall x\)

Dấu '=' xảy ra khi x=-4

c: Ta có: \(C=-3x^2+12x+8\)

\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)

\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)

\(=-3\left(x-2\right)^2+20\le20\forall x\)

Dấu '=' xảy ra khi x=2

d: Ta có: \(D=-5x^2+9x-3\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)

e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)

\(=4x+24-x^2-6x\)

\(=-x^2-2x+24\)

\(=-\left(x^2+2x-24\right)\)

\(=-\left(x^2+2x+1-25\right)\)

\(=-\left(x+1\right)^2+25\le25\forall x\)

Dấu '=' xảy ra khi x=-1

f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)

\(=8x-6x^2+20-15x\)

\(=-6x^2-7x+20\)

\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)

\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)

\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2021

Lời giải:

1.

$(x-3)^2=4x^2+20x+25=(2x+5)^2$

$\Leftrightarrow (x-3)^2-(2x+5)^2=0$

$\Leftrightarrow (x-3-2x-5)(x-3+2x+5)=0$

$\Leftrightarrow (-x-8)(3x+2)=0$

$\Leftrightarrow -x-8=0$ hoặc $3x+2=0$

$\Leftrightarrow x=-8$ hoặc $x=-\frac{2}{3}$

2.

$2x(x-4)+x^2-16=0$

$\Leftrightarrow 2x(x-4)+(x-4)(x+4)=0$

$\Leftrightarrow (x-4)(2x+x+4)=0$

$\Leftrightarrow (x-4)(3x+4)=0$

$\Leftrightarrow x-4=0$ hoặc $3x+4=0$

$\Leftrightarrow x=4$ hoặc $x=-\frac{4}{3}$

5 tháng 10 2021

a) \(\Rightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)

\(\Rightarrow x^3-9x=0\)

\(\Rightarrow x\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x^3-1=x^3-9x^2+2x^2+6\)

\(\Rightarrow7x^2=7\)

\(\Rightarrow x^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)