Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^2y^2}{2^2.4^2}=\frac{4}{64}=\frac{1}{16}\)
\(\Rightarrow\begin{cases}x=\pm1\\y=\pm2\end{cases}\)
Mà 2 ; 4 cùng dấu
=> x ; y cùng dấu
Vậy ........
b)
\(4x=7y\)
\(\Rightarrow\frac{x}{7}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\begin{cases}x=\pm14\\y=\pm8\end{cases}\)
Mày 4 và 7 cùng dấu
=> x ; y cùng dấu
Vậy ........
Từ 4x = 7y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}\)
Đặt \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{4}k\\y=\frac{1}{7}k\end{cases}}\)
Khi đó : x2 + y2 = 260
<=> ( 1/4k )2 + ( 1/7k )2 = 260
<=> 1/16k2 + 1/49k2 = 260
<=> k2( 1/16 + 1/49 ) = 260
<=> k2.65/784 = 260
<=> k2 = 3136
<=> k = ±56
Với k = 56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot56=14\\y=\frac{1}{7}\cdot56=8\end{cases}}\)
Với k = -56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot\left(-56\right)=-14\\y=\frac{1}{7}\cdot\left(-56\right)=-8\end{cases}}\)
=>x/7=y/4 va x^2+y^2=260
Ap dung day ti so bang nhau ,ta co:
x^2/49=y^2/16=x^2+y^2/49+16=260/65=4
=>x^2/49=4 =>x^2=196 =>x=+ -14
y^2/16=4 =>y^2=64 =>y=+ -8
Mk dang con 1 cach do la dat =k
Chuc ban lam bai tot !!!!!
Do 4x = 7y => x = 7/4y
Ta có: x2 + y2 = 260
=> \(\left(\frac{7}{4}y\right)^2+y^2=260\)
=> \(\left(\frac{7}{4}\right)^2.y^2+y^2=260\)
=> \(\frac{49}{16}.y^2+y^2=260\)
=> \(y^2.\frac{65}{16}=260\)
=> y2 = \(260:\frac{65}{16}\)
=> y2 = \(260\times\frac{16}{65}\)
=> y2 = 64 = 82 = (-8)2
=> y thuộc {8 ; -8}
+ Nếu y = 8 thì x = 7/4.8 = 14
+ Nếu y = -8 thì x = 7/4.(-8) = -14
Vậy \(\hept{\begin{cases}x=14\\y=8\end{cases};\hept{\begin{cases}x=-14\\y=-8\end{cases}}}\)
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)
\(\Leftrightarrow141k^2=141\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow k=\pm1\)
TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)
TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy.....
a)
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)
\(\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{4}=1\Rightarrow y=4.1=4\)
\(\frac{z}{5}=1\Rightarrow z=5.1=5\)
Vậy x = 3
y=4
z=5
I don't now
sorry
.....................
a) ta có: \(\frac{x}{2}=\frac{y}{4}\Rightarrow\hept{\begin{cases}x=2k\\y=4k\end{cases}\Rightarrow\hept{\begin{cases}x^2=4k^2\\y^2=16k^2\end{cases}}}\)
mà x^2.y^2 = 2 => 4k^2.16k^2 = 2
64.k^4 = 2
k^4 = 1/32 = (1/2)^5 => không tìm được k
=> không tìm được x,y
b) ta có: \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)
ADTCDTSBN
có: \(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
=>...
c) Gọi chiều dài tấm vải thứ 1;2;3 lần lượt là a;b;c
ta có:- cắt tấm thứ 1 đi 1/2, tấm thứ 2 đi 1/3, tấm thứ 3 đi 1/4 chiều dài thì 3 tấm vải bằng nhau
\(\Rightarrow a.\frac{1}{2}=b.\frac{2}{3}=c.\frac{3}{4}\)
\(\Rightarrow a\cdot\frac{1}{2}\cdot\frac{1}{6}=b\cdot\frac{2}{3}\cdot\frac{1}{6}=c\cdot\frac{3}{4}\cdot\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)
- Tổng chiều dài 3 tấm vải là: 145 => a + b + c = 145
ADTCDTSBN
có: \(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a+b+c}{12+9+8}=\frac{145}{29}=5\)
=>...
bn tự tính nha!