Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0
+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:
x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)
= x+y+z/2.(x+y+z) = 1/2 = x+y+z
=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2
=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2
=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2
=> x=1/6 = y; z = -1/2
b) Theo bài ra ta có:
x + 1/x = k (k thuộc Z)
=> x^2+1/x = k
+ Với k = 0 => x = 0 (thỏa mãn)
+ Với k khác 0, do k nguyên nên x^2+1/x nguyên
=> x^2+1 chia hết cho x
=> 1 chia hết cho x
=> x thuộc {1 ; -1} (thỏa mãn)
Vậy số hữu tỉ x cần tìm là 0; 1; -1
tìm x, y biết x+y= x: y = 3.(x-y) với y khác 0
tìm các giá trị của x sao cho P=\(\frac{x+2}{5-x}\) >0
3(x+y)/3=x/y=3(x-y)/1=4x/(y+4)=x/y=>x=0,y=0
hoặc y+4=4y=>y=4/3=>x=y^2/(y-1)=?
b) nghiêm ử=-2; ủa mẫu là 5=>
-2<x<5
Ta có:
\(xy=x:y\Leftrightarrow xy=x.\dfrac{1}{y}\)
\(\Leftrightarrow xy-x.\dfrac{1}{y}=0\)
\(\Leftrightarrow x\left(y-\dfrac{1}{y}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\)
TH1: \(x=0\)
\(\Rightarrow x-y=xy=0\Leftrightarrow x=y=0\left(ktm\right)\)
TH2:\(y-\dfrac{1}{y}=0\Leftrightarrow\dfrac{y^2-1}{y}=0\)
\(\Leftrightarrow y^2-1=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Khi \(y=1\) thì \(x-1=x\)(không có \(x\) thoả mãn)
Khi \(y=-1\) thì \(x+1=-x\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)(tm)
Vậy \(x=-\dfrac{1}{2}\) và \(y=-1\)