K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(xy=x:y\Leftrightarrow xy=x.\dfrac{1}{y}\)

\(\Leftrightarrow xy-x.\dfrac{1}{y}=0\)

\(\Leftrightarrow x\left(y-\dfrac{1}{y}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\)

TH1: \(x=0\)

\(\Rightarrow x-y=xy=0\Leftrightarrow x=y=0\left(ktm\right)\)

TH2:\(y-\dfrac{1}{y}=0\Leftrightarrow\dfrac{y^2-1}{y}=0\)

\(\Leftrightarrow y^2-1=0\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

Khi \(y=1\) thì \(x-1=x\)(không có \(x\) thoả mãn)

Khi \(y=-1\) thì \(x+1=-x\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)(tm)

Vậy \(x=-\dfrac{1}{2}\) và \(y=-1\)

11 tháng 12 2016

a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0

+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:

x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)

= x+y+z/2.(x+y+z) = 1/2 = x+y+z

=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2

=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2

=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2

=> x=1/6 = y; z = -1/2

b) Theo bài ra ta có:

x + 1/x = k (k thuộc Z)

=> x^2+1/x = k

+ Với k = 0 => x = 0 (thỏa mãn)

+ Với k khác 0, do k nguyên nên x^2+1/x nguyên

=> x^2+1 chia hết cho x

=> 1 chia hết cho x

=> x thuộc {1 ; -1} (thỏa mãn)

Vậy số hữu tỉ x cần tìm là 0; 1; -1

11 tháng 12 2016

bạn ơi

câu a , x=1/2 , y=1/2 , z=-1/2

12 tháng 5 2023

cặc

 

27 tháng 8 2016

khó quá bạn ơi

26 tháng 1 2017

​3(x+y)/3=x/y=3(x-y)/1=4x/(y+4)=x/y=>x=0,y=0

​hoặc y+4=4y=>y=4/3=>x=y^2/(y-1)=?

​b) nghiêm ử=-2; ủa mẫu là 5=>

​-2<x<5

26 tháng 1 2017

bạn viết chi tiết đc k, mk k hỉu

15 tháng 12 2021

Answer:

Có:

\(x-y=2\left(x+y\right)\)

\(\Rightarrow x-y=2x+2y\)

\(\Rightarrow x=-3y\)

Ta thay \(x=-3\) vào \(-2y=3\frac{x}{y}\)

\(-3y-2y=3.\frac{-3y}{y}\)

\(\Rightarrow-5y=9\)

\(\Rightarrow y=\frac{9}{5}\)

\(\Rightarrow x=-3.\frac{9}{5}=\frac{-27}{5}\)

11 tháng 11 2017
nhầm nha :x-2xy+y=0 mới đúng nha