K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2016

Giả sử 1 \(<\) x \(\le\)y. Đặt x+1=yk ( k là một là một số tự nhiên khác 0)

Ta có : x+1 = yk \(\le\) y+1 \(<\) y+y = 2y

=> yk \(<\) 2y

=> k\(<\)  2

Mà k là một là một số tự nhiên khác 0

Nên k=1

Thay k = x+1 vào y+1 ta được

        x+1+1 = x+2 chia hết cho x

Mà x chia hết cho x nên 2 chia hết cho x

=> x\(\in\left\{1;2\right\}\)

Với x=1 thì y=x+1=1+1=2

Với x=2 thì y=2+1=3

Vậy các cặp số (x;y) thỏa mãn : (1;2) ; (2;3)

1 tháng 4

Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\)\(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\)\(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Bài toán phần a)

Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).

Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:

\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)

Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:

\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)

Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:

\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)

Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:

\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)

tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.

Bài toán phần b)

Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:

\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)

Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:

\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)

Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).

Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:

\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)

với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).

Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.

Kết luận: Chúng ta đã chứng minh được rằng:

  • a) \(x^{3} + 1\) chia hết cho \(y + 1\),
  • b) \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
23 tháng 8 2023

a) Giả sử \(x^2+x⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)

\(\Rightarrow x^2+x+1⋮̸9\)

\(\Rightarrow dpcm\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

Ta thấy \(x\left(x+1\right)\) là số chẵn

\(\left(1\right)\Rightarrow3^y-1\) là số chẵn

\(\Rightarrow y\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài

23 tháng 8 2023

Đính chính

a) Giả sử \(x^2+x\) \(⋮̸9\)

\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)

\(\Rightarrow x^2+x+1\) \(⋮̸9\)

b) \(x^2+x+1=3^y\)

\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)

mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn

\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)