Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nha
Vì ƯCLN(a, b) = 16 ⇒ a và b là bội của 16, ta giả sử a = 16m; b = 16n với
ƯCLN(m, n) = 1 và do các số tự nhiên khác 0 nên m,n ∈ N*
Ta có a + b = 96 nên 16. m + 16. n = 96
16. (m + n) =96
m + n = 96: 16
m + n = 6
+) Với m = 1; n = 5 ta được a = 1. 16 = 16; b = 5. 16 = 80
+) Với m = 5; n = 1, ta được a = 5. 16 = 80; b = 1. 16 = 16
Vậy các cặp số (a; b) thỏa mãn là (16; 80); (80; 16)
Ta có: 1+2+3+...+bc=abc (0 < a ≤9 và 0≤b,c ≤9)
<=> ab ( \(ab\) +1)2 = abc
<=> bc ( bc+1)=2. abc
<=> bc.bc+bc=2(100a+bc)
<=> bc.bc+bc=200a+2bc
<=> bc(bc-1)=200a
Nhận xét: Vế phải là 200a => Số tận cùng là 0.
Vậy vế trái bc.(bc-1) cũng phải có tận cùng là 0 và phải chia hết cho 100.
Có các trường hợp: c = 0, c = 1, c = 5 và c = 6.
Xét từng trường hợp, có: +/ TH1: Với c=0 => b0(b0-1)=200a
<=> 10b(10b-1)=200a <=> b(10b-1)=20a. Không có giá trị của b thỏa mãn để: b(10b-1)⋮10 => Loại
+Trường hợp 2: Với c=1 => b1(b1-1)=200a
<=> (10b+1).10b=200a <=> b(10b+1)=20a. Không có giá trị của b thỏa mãn để: b(10b+1)⋮10 => Loại
+/ Trường hợp 3: Với c=5 => b5(b5-1)=200a <=> b4.b5=200a
Nhận thấy: b4 và b5 là 2 số tự nhiên liên tiếp. Để tích của chúng có 2 chữ số tận cùng là 0.
Ta chọn được duy nhất b=2 (Do 24.25=600) => 24.25=200a => a=3 (nhận)
+/ Trường hợp4: Với c=6 => b6.b5=200a
Nhận thấy: b5 và b6 là 2 số tự nhiên liên tiếp. Để tích của chúng có 2 chữ số tận cùng là 0.
Ta chọn được duy nhất b=7 (Do 75.76=5700) <=> 75.76=200a => a=28,5 (Loại)
Vậy cặp số duy nhất thỏa mãn là: a=3, b=2, c=5 Vậy \(\overline{abc}\) = 325.
TTTTTTTTTTTTTTHHHHHHHHHHHHHAAAAAAAAAAAAAANNNNNNNNKKKKKKKKKKKKKKSSSSSSSSSSSSSSS HỒ ĐỨC VIỆT