Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
Hình vẽ ; giả thiết, kết luận đã được đầu bài cho sẵn.
Chứng minh :
Xét \(\Delta AMC\text{ và }\Delta BMD\), có :
\(MA=MB\text{ (gt)}\)
\(\angle AMC=\angle DMB\text{ (đối đỉnh)}\)
\(DM=CM\text{ (gt)}\)
\(\Rightarrow\Delta AMC=\Delta BMD\text{ (c.g.c)}\)
b/ Ta có : \(\bigtriangleup AMC=\bigtriangleup BMD\text{ (c.m.t)}\)
\(\Rightarrow\widehat{DBM}=\widehat{ACM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (1)
\(\Rightarrow BD//AC\)
Xét \(\bigtriangleup DMA\text{ và }\bigtriangleup BMC,\text{ có :}\)
\(\widehat{DMA}=\widehat{BMC}\text{ (đối đỉnh)}\)
\(DM=CM\left(gt\right)\)
\(BM=AM\left(gt\right)\)
\(\Rightarrow\bigtriangleup DMA=\bigtriangleup BMC\left(c.g.c\right)\)
\(\Rightarrow\widehat{ADM}=\widehat{DCM}\text{ (2 góc tương ứng ở vị trí so le trong)}\) (2)
\(\text{Từ (1) và (2) suy ra tứ giác ABCD là hình bình hành}\) (3)
\(\angle ACB=90^{\text{o}}\) (4)
\(\text{T}ừ\text{ (3) và (4) suy ra hình bình hành ABCD là hình chữ nhật}\) (đpcm)
bài 1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)
bài 2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)
bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\)
\(\frac{b}{c}=1\)
\(\frac{c}{a}=1\)
=> a=b (1)
b=c (2)
c=a (3)
=> a=b=c