Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Vì \(0,6=\frac{6}{10}=\frac{3}{5}\)
\(-1,25=\frac{-125}{100}=\frac{-5}{4}\)
nên 0,6 và -1,25 là các số hữu tỉ
- Số nguyên a là số hữu tỉ vì ta có thể viết a dưới dạng phân số là \(\frac{\alpha}{1}\)
- Câu c bạn tự vẽ nha
- số hữu tỉ dương : \(\frac{2}{3};\frac{-3}{-5}\)
số hữu tỉ âm : \(\frac{-3}{7};\frac{1}{-5};-4\)
số không hữu tỉ âm cũng không phải hữu tỉ dương là \(\frac{0}{-2}\) ( vì kết quả bằng 0 )
Bài 11:
Ta có: \(x=\dfrac{-101}{a+7}\) nguyên khi \(-101⋮a+7\)
Vậy: \(a+7\inƯ\left(101\right)\)
\(Ư\left(101\right)=\left\{101;1;-101;-1\right\}\)
\(a+7\in\left\{101;1;-101;-1\right\}\)
\(\Rightarrow a\in\left\{94;-108;-6;-8\right\}\)
Vậy x sẽ nguyên khi \(a\in\left\{94;-108l-6;-8\right\}\)
Bài 12:
Ta có: \(t=\dfrac{3x+8}{x-5}=\dfrac{3x+15-7}{x-5}=\dfrac{3\left(x+5\right)-7}{x-5}=3+\dfrac{7}{x-5}\)
t nguyên khi \(\dfrac{7}{x+5}\) nguyên tức là \(x-5\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x-5\in\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x\in\left\{12;-2;4;6\right\}\)
Vậy t sẽ nguyên khi \(x\in\left\{12;-2;4;6\right\}\)
Các số hữu tỉ âm là :
\(\frac{-3}{7};\frac{1}{-5};-4\)
CÁc số không phải số hữ tỉ âm + giải thích là :
\(\frac{2}{3}>0\)
\(\frac{0}{-2}=0\)( không là số hữu tỉ âm cũng không là số hữu tỉ dương )
\(\frac{-3}{-5}=\frac{3}{5}>0\)
- Số hữu tỷ dương: \(\frac{2}{3}\)
- Số hữu tỷ âm: \(\frac{-3}{7};\frac{-1}{5};-4;\frac{-3}{5}\)
- Số không phải số hữu tỷ âm cũng không phải số hữu tỷ dương: \(\frac{0}{-2}\)
- Số 3/0 không phải là số hữu tỷ.
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)
a) Các số hữu tỉ dương là: \(\frac{5}{{12}};\,2\frac{2}{3}.\)
Các số hữu tỉ âm là: \( - \frac{4}{5}; - 2;\, - 0,32.\)
Số không là số hữu tỉ dương cũng không là số hữu tỉ âm là: \(\frac{0}{{234}}\).
b) Ta có: \( - \frac{4}{5} = -0,8\)
Vì 0 < 0,32 < 0,8 < 2 nên 0 > -0,32 > -0,8 > -2 hay \(-2 < - \frac{4}{5} < -0,32 < 0\)
Mà \(0 < \frac{5}{12} <1; 1<2\frac{2}{3}\) nên \(0 < \frac{5}{12} < 2\frac{2}{3}\)
Các số theo thứ tự từ nhỏ đến lớn là:
\(-2 ; - \frac{4}{5} ; -0,32; \frac{0}{{234}}; \frac{5}{12} ; 2\frac{2}{3}\)
Chú ý: \(\frac{0}{a} = 0\,,\,a \ne 0.\)
Số hữu tỉ không là số hữu tỉ dương cũng không là số hữu tỉ âm là:
\(\dfrac{5}{3}=5:3\)
Vậy \(2\) số đó là \(5\) và \(3\)