Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-b=2\left(a+b\right)\)
\(\Leftrightarrow a-b=2a+2b\Leftrightarrow a=3b\)
\(\Leftrightarrow\frac{a}{b}=3\)
\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{3}{2}\\a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\left(\frac{3}{2}+3\right):2=\frac{9}{4}\\b=\frac{9}{4}-3=\frac{-3}{4}\end{cases}}\)
a)Ta có 7x=2y
Suy ra:\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)
Và x-y=16
Áp dụng công thức của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)=\(\dfrac{x-y}{\dfrac{1}{7}-\dfrac{1}{2}}\)=\(\dfrac{16}{\dfrac{-5}{14}}\)=\(\dfrac{-224}{5}\)
Từ \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{-224}{5}\)suy ra :x=\(\dfrac{-224}{5}\cdot\dfrac{1}{7}\)=\(-\dfrac{32}{5}\)
\(\dfrac{y}{\dfrac{1}{2}}=-\dfrac{224}{5}\)suy ra:y=\(-\dfrac{224}{5}\cdot\dfrac{1}{2}=-\dfrac{112}{5}\)
c)Ta có :\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Mà a+2b-c=-20
Suy ra:\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}=\dfrac{a+2b-c}{2+6-4}=-\dfrac{20}{4}=-5\)
Từ \(\dfrac{a}{2}=-5,suyra:a=-5\cdot2=-10\)
\(\dfrac{b}{3}=-5,suyra:b=-5\cdot3=-15\)
\(\dfrac{c}{4}=-5,suyra:c=-5\cdot4=-20\)
Vậy a=-10,b=-15,c=-20
\(a-b=a:b=2.\left(a+b\right)\)
Ta có: \(a-b=2.\left(a+b\right)\)
\(\Rightarrow a-b=2a+2b\)
\(\Rightarrow a-2a=2b+b\)
\(\Rightarrow-a=3b\)
\(\Rightarrow a=-3b\) (1)
Lại có: \(a-b=a:b\)
\(\Rightarrow\left(a-b\right).b=a\) (2)
Từ (1) và (2) \(\Rightarrow-3b=\left(a-b\right).b\)
\(\Rightarrow a-b=-3.\)
Thay \(a-b=-3;a=-3b\) vào \(a-b\) ta được:
\(-3b-b=-3\)
\(\Rightarrow-4b=-3\)
\(\Rightarrow b=\left(-3\right):\left(-4\right)\)
\(\Rightarrow b=\frac{3}{4}.\)
\(\Rightarrow a=\left(-3\right).\frac{3}{4}\)
\(\Rightarrow a=-\frac{9}{4}.\)
Vậy \(\left(a;b\right)=\left(-\frac{9}{4};\frac{3}{4}\right).\)
Chúc bạn học tốt!
Ta có: a-b=2.(a+b) ⇔a-2a=2b-b⇒b+a=0(1)
\(a-b=\frac{a}{b}\)⇔a-b=-1(2)
Từ (1) và (2) ⇒a=\(\frac{-1}{2}\); b=\(\frac{1}{2}\)
\(\frac{a}{b}=\frac{ab+a}{b^2+b};\frac{a+1}{b+1}=\frac{ab+b}{b^2+b}\)
\(+,a>b\Rightarrow ab+a>ab+b\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\left(vì:b>0\right)\)
\(+,a=b\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)
\(+,a< b\Rightarrow ab+a< ab+b\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\left(vì:b>0\right)\)
\(Vậy:voi:a>b\text{ thì }\frac{a}{b}>\frac{a+1}{b+1};voi:a=b\text{ thì: }\frac{a}{b}=\frac{a+1}{b+1}=1;voi:a< b\text{ thì:}\frac{a}{b}< \frac{a+1}{b+1}\)
ta có
ab = a/b
=> b = a: ab
= > ab - a = a : ab
=> a( b-1) = b
.................
đến đây tự giải nhé
OK
BYE
TK nha
thanks
chúc bạn học tôt
\(a-b=2a+2b\Rightarrow-a=3b\Rightarrow a=-3b\Rightarrow\frac{a}{b}=-3\)
=>\(a-b=-3\left(1\right);2\left(a+b\right)=-3\Rightarrow a+b=\frac{-3}{2}\left(2\right)\)
Từ (1) và (2) => \(a-b+a+b=-3+\frac{-3}{2}\Rightarrow2a=\frac{-9}{2}\Rightarrow a=\frac{-9}{4}\Rightarrow b=\frac{3}{4}\)
Vậy ................