Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có tận cùng là 9 nếu nâng lên lũy thừa bậc chẵn thì có tận cùng là 1
\(\Rightarrow\)A=\(2019^{200}\)có tận cùng là 1
Bất cứ số tự nhiên nào nếu nâng lên lũy thừa là 4n+1 thì có tận cùng là chính nó
\(\Rightarrow\)\(2018^{201}\)=\(2018^{4.50+1}\)\(\Rightarrow\)\(2018^{201}\)có tận cùng là 8
a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\sqrt{ }\)(có nghĩa là \(\div R\))
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = "
chúc bạn thành công
a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\frac{ }{ }\)(có nghĩa là ÷R)
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = ". Nó ra là: \(1568429973\)
chúc bạn thành công
1)
a) Ta có:
3512=353.353.353.353=....75......75....75.....75=....25
Vậy hai chữ số tận cùng của 3512là 25
b) Ta có:
5523=52.52....52.5=....25....25 . ... .....25 . 5 = ....25
=> Hai chữ số tận cùng của 5523 là 25
Vậy hai chữ tận cùng của 5523 là 25.
ta có \(2^{2018}=2^{4k+2}=\left(2^4\right)^k+4=16^k+1=...6+1=...7\)
lại có \(17^{2019}=17^{4k+3}=\left(17^4\right)^k+17^3=...3^k+343=...3+343=....6\)
lại có \(13^{2020}=13^{4k}=\left(13^4\right)^k=...1^k=...1\)
=> A=....7x....6x......1=........2
BT1: 20152014 có tận cùng là 5
20142015=2014.(20142)1007=2014.40561961007=2014.(...6) => Có tận cùng là ...4
=> 20152014-20142015 có tận cùng là ...5-...4=...1
BT2: f(1)=a.1+b=1 (1)
f(2)=a.2+b=4 (2)
Trừ (2) cho (1) => a=3
Thay a=3 vào (1) => b=-2
ĐS: a=3; b=-2
Chữ số tận cùng của \(2^{202}\) là 4.
Chữ số tận cùng của biểu thức A: là 7
a) Đặt \(A=\frac{2018}{|x|+2019}\)
Vì \(|x|\ge0;\forall x\)
\(\Rightarrow|x|+2019\ge0+2019;\forall x\)
\(\Rightarrow\frac{2018}{|x|+2019}\le\frac{2018}{2019};\forall x\)
Hay \(A\le\frac{2018}{2019};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy MIN \(A=\frac{2018}{2019}\Leftrightarrow x=0\)
b) Đặt \(B=\frac{|x|+2018}{-2019}\)
Vì \(|x|\ge0;\forall x\)
\(\Rightarrow|x|+2018\ge0+2018;\forall x\)
\(\Rightarrow\frac{|x|+2018}{-2019}\le\frac{-2018}{2019};\forall x\)
Hay \(B\le\frac{-2018}{2019};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vạy MIN \(B=\frac{-2018}{2019}\Leftrightarrow X=0\)
Ta thấy \(9^{2k}=....1\)và \(9^{2k+1}=9\)
mà 200 là số chẵn nên \(A=2019^{200}=......1\)(tận cùng là 1)
Ta thấy \(8^{4k}=.....6\)(4k là số mũ chia hết cho 4)
nên \(B=2018^{201}=2018^{200}.2018=.....6.2018=.....8\)(tận cùng là 8)
2 c/số tận cùng mà