Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,71992=(74)498=2401498=............01→71992 có 2 chữ số tận cùng là 01
b,99101=(92)50.99=980150.99=(..........01).99=...........99→99101 có 2 chữ số tận cùng là 99
c,19451945=(19452)972.1945=(...25)972.1945=(....25).1945=........25
→19451945 có 2 chữ số tận cùng là 25
d,24100=(244)25=33177625=............76→24100 có 2 chữ số tận cùng là 76
e,21000=(220)50=104857650=.............76→21000 có 2 chữ số tận cùng là 76

a) \(2007^{2008}=\left(2007^4\right)^{502}\)
\(=\left(...1\right)^{502}=\left(...1\right)\)
=> \(2007^{2008}\) có chữ số tận cùng là 1
b) \(1358^{2009}=\left(1358^4\right)^{502}\cdot1358\)
\(=\left(...6\right)^{502}\cdot1358=\left(...6\right)\cdot1358=\left(...8\right)\)
=> \(1358^{2009}\) có chứ số tận cùng là 8
c) \(52^{35}=\left(52^4\right)^8\cdot52^3\)
\(=\left(...6\right)^8\cdot\left(...8\right)=\left(...6\right)\cdot\left(...8\right)=\left(...8\right)\)
=> \(52^{35}\) có chữ số tận cùng là 8
d) \(9^{99}=\left(9^2\right)^{49}\cdot9\)
\(=\left(...1\right)^{49}\cdot9=\left(...9\right)\)
=> \(9^{99}\) có chữ số tận cùng là 9
e) \(5^{6^7}\) có chữ số tận cùng bằng 5 là số lẻ
\(\Rightarrow5^{6^7}=2k+1\) ( \(k\in N\)* )
\(\Rightarrow4^{5^{6^7}}=4^{2k+1}=16^k\cdot4\)
\(=\left(...6\right)\cdot4=\left(...4\right)\)
\(\Rightarrow\text{ 4}^{5^{6^7}}\) có chữ số tận cùng là 4
g) \(=\left(17^4\right)^{503}+\left(...1\right)-\left(7^4\right)^{503}\)
\(=\left(...1\right)^{503}+\left(...1\right)-\left(...1\right)^{503}\)
\(=\left(...1\right)+\left(...1\right)-\left(...1\right)=\left(...1\right)\)có tận cùng là 1
h) \(=\left(3^4\right)^{505}\cdot3\cdot\left(7^4\right)^{505}\cdot7^2\cdot\left(13^4\right)^{505}\cdot13^3\)
\(=81^{505}\cdot3\cdot\left(...1\right)^{505}\cdot49\cdot\left(...1\right)^{505}\cdot\left(...7\right)\)
\(=\left(...1\right)\cdot3\cdot\left(...1\right)\cdot49\cdot\left(...1\right)\cdot\left(...7\right)\)
\(=\left(...9\right)\) có chữ số tận cùng là 9

1) \(\left(9^9\right)^{2013}\)= 1026936315936466644007655232277334158156103408524055441368417162984522655091086906314108445516502484646730803186280183953735060258580738890779016567783128742277443266030645053000370688213001912666003362130414573924427617357704809050499482091752946944217365290524293447277785875056747263299466460038193422474667528424271680418770747397115304929638956453828239332110052185072915834267291697848663307334639508752470930402611542381620336575749463842313193588247628614804122537752157307173145355712036732199577500474260456976474502238941276601372253245007736761993906930051900170289818510239277392738996048088854235632472636323753689820558697883030218432519322622343591607096103803493578687156569416803248303477626186380247107570572687865343338300100118924192603518275807054239857318826838307416910902040259036049621875924220127196379239471561826559434563423075800724469900400300040159052195977359572353303973703643001571087917913137076064709413307255417079499363284247140649746269536516691680327257452245440138266397448556568053001097875042519788926905739503327586366847865493444133449455506431848468934231630697152102459587693955546794340951359973974246571971095730740103946650501885793455461393041504593666429863927205865731260191652014957294105725354606028065809108585710828735023586052037624862615881255170223986612277140259867308693692913524330929799646164708688765601512109313349574509822781385464558749433184595170926935858749974088068616143705100144672164593160370193136604675657191559134608219409953517986494243514788971966486689395199320932818055296903344541638617207415815650906818484611000987765549841179613358592946528510547663264466169888514147018943628319934979815358306853694250579369170285224662060226941844533083450895413144426876575931247934341990474013932087924206429013839339619081485400687502321763335850155938686962990356280348259890705858083464218700873277406929113812270773100931724721446319950200734938259274420684561062207311929135379317795625970174331692616532968812290672192719632301088918105516980649956654688416491404227850833003606454955813322669703124707051088776330657942143367560755895491239632785346742400333521634988363706325830086758733003107032055269088858396206070942576145524447341617529555079020662989965232684156212812549436269738037891399615703721380901090915261705306504796587364430270191516149142247702882291499181275124401464836481565285225966356210150534392969830036474527726739334735542814296748215232174711227692064595037307803669170817046315776900108143303972394011595827736831894502369837041899011411462368103059877154789325324218339673368994146645015446471646714044170017089013107039431723566924973616793942222553191471205340039459102517004652793394193180872771770081049022665745745801492519226280222379337791126765095526665708900958521211283690589438139701827069810355628457689462449174192472454823277707703931769511523402172088323346511339966064303882539230522459494582356765308832632744209535331162834962460212181389503850237088696407511771903988580976017142272712992447383945731576824359740331987063655005516090030376992271875220653120183170542438567583462347089812079841488460323755675849648342224979798891349597114494885781007080896214002744995783915850907230933522861281601415358680918097776532712162793713404996768434536910832959969822168089790423725364669610463828931705893795678670450265470501857833192504905238157437136407924482707690074600704467004460751493442877418540656968811357181297883496033956346452044527520385438779942609030326217555091398587968532301339527314058490612128489860041998799368618820443539109425221847139081891713039087218286851930899483989721898294944242901957324795291290538049075541991359845781927616941778628448234758137009317434798187748910014905940960363520220484339080730076833212071982879793665358440454469434838321254919208741817386778536122176850668886430875598694660895328200311197435920543048271551229348941074255188905794440996596273172913590736916479452088440747449846094215986199905169079998682043901493347123203691856739036583513230518566225891359066972171127103587649854469267685017308377781513871345173585295949758250554213972099633887299424620149370085422553180576977919929740533560073700690325720729082093104494502422759523112838712027606438422754640293436106826607258752572572701200278832907762014653136642892655305845698597681850307268402593458663789848395823450866281803118071552452077617109401349402101367672811015042391494471013423800348706308123842366833092501553905659790084088538093176919716972583354144568901310426642434019786996725862398237165792755405187234720936153283078807801977180417909881940041894864954027083459707902989105399082477860011074755831567742002921262180561813216003113025741566417269149294529269755930423136814550198894165317271092065044318125427494890824949593586767565200787439396106655092028278013360450558783644656940947679295287600004765992481889190429827022207642135788661174477435648180566286191330333295323147060741100629863095687029722409936853895283432691463126507353983593892497046958267783905130426170111927280910047070050612100937946498873103263031074976261957513993115802752721579872777080872360411360260782894504855073589667054506530591747900059485189087277248382614161056654649707928694996013355672002986520721307090648502637466261888739154517767512272941143864465965147818438271394054272035613676863628666879330126789382606298763582826669099347506539078324626973229584105863547757428142498322510987515363131810574081188857112711365848275064867382051891733551113839596911899765594904328468503931363859338150357817639813486073345263438062122011530183605498044471970431607359800791967264010218608285723467812123749036732142403008106602542464783775422435298585807448543516258845465655844111403161845529791780538289442909425354548851932392694303359705164700204358597043402141152819226709200628591863459700806259572405836139550184313961581046924609874157901030613827584947312562317464572222700841964911009267637169004385041130563743953571504906172159750428127399350300931402070479301670529170615856011832858722307113041690041755657728678726419372059691255470144663531274082779335381740160578026303644613212900225878103916223041133352804873266163657903158574192828632243175807540088502548453528803110596011739655137032459469927760677051481785815318999046215578888702463906792131094213645537357852611606076013276773613390990388173633245700515545076816133542599598499949723848446846040903867776433205190899458255921949520148434244684972358450429478617399109483668411833154341343331596817113688925531133966594356450437151847089918527052466610924085855975570724149296945214723797165852817441094282320203756276507525476812533694746988614602627000447075297716670810246470607294951837087981880185870081483970273663390845791653147404366837274335890164587108250142705517640988039479752905527665703615863346026282171391193190112534294544585726008204363693191833965757306207085939261792334572843940733961127799890504819910614969470093349277145503657154837433994483870782259224359663573131541668881840466987976168916438787978818848230967569497655841297878026184394003642764079687952562476576146449442282665665627062431983400658177836470304870687728154854192613653152535493360438487180031985143543617912832793367412349947726683917996081583384702918734566505578806128946841857562087241435004087070789542240773581921928005901690258672269092590124500796445719082697792225382784151790938676825306626865188529596442803922777148260497623892895270534600217592445771483895959368006353307304241803967957192744250039467817705371796676384795268591135125140223131933633348757546184329503534513723177842537591210082615190216661722192968680477180317993874327059375746383249204423388877854621585002142950138500998980754470880782997405789372694278455215744885287053078760429841030680604256082019513240058465876476686113482531622663644883596054171375493255831576420272830752431634417232232882465379393173662913872082870209808446797323357040155190328323992315789585266903266828863588330335547870366782441908444367043692439803818881157436020122216202518524682411877554723277000405601285026176606291268217957356053077981068457723039154415074902180316582650007989729437021464604582253864059586460048260679487724704675866586698851810229896553877362626216059041696538021938652043271314984392204765164687779233220067263693213225060451042319669294233260313335379542045376715328477015835543606860048626014264988155465791046017596596488729705124299932904937714100497822944619926932556076021781638353926980618924509567280552511774898178183380408535332274238263462857749564025886673346241689220239194135371213590607731864979855691221933163266128212992157311201100582332659440876199030841741026154166377915370598488067078371415319375427727871951800558420118475796978600403940948465456769302708717449307325121955867230292193107738235633827754864717358892601233377095074936732132284373204027933918066684558971240197355111463383881302485003552384368392525154670448582107380907112689572461895703657643559372285238675498922192204428732862650671502772426820495422208684425663259876566065182166188271090573539769385459220918977757051198100386641318298053260505549618871966912908666212193523708164550173741867042506350232610165673912771635902190474664590911859675736148212118522255524812604463775058875135451329172876439928813868904160614003825581937604612326177792821096132608244238560824137851366110812005463287141899355151442378684050172236810364678989505885190074214284284959005557252055717378597484460165885696223840619316331040542397531108669751210899626818870762213291033776300895989013816097525277221258955433345550132182061450410343607884073951739721319091655297604945196190262079363901299620303646225638620166689963605526844298501915881282126682238782636151617537506673786427348984008182232675423156980717768277374147919112069962326042326866062911778799566351427521992050027454909678046580762578435439410173495078163510520075641724912805...
1)
a) Theo đề ta có:
(99)2013 = 99.2013= 918117
Ta có:
91 = 9 có chữ số tận cùng là 9
92 = 81 có chữ số tận cùng là 1
và 918117 = 92.9058. 9 = (92)9058 .9 ( mình giải thích thêm là mình nhân 9 để cùng cơ số và cộng các tử lại là 2.9058 + 1 = 18117)
Vì 92 có chữ số tận cùng là 1
Nên (92)9058 cũng có chữ số tận cùng là 1
\(\Rightarrow\)918117 = (...1) .9
\(\Rightarrow\)918117 = (...9)
Vậy chữ số tận cùng của (99)2013 là 9
b) Ta có:
20081 = 2008 có chữ số tận cùng là 8
20082 = (...4) có chữ số tận cùng là 4 (vì 8.8=64)
20083 = (...2) có chữ số tận cùng là 2 (vì 4.8=32)
20084 = (...6) có chữ số tận cùng là 6 (vì 2.8=16)
và 2008100 = 20084.25= (20084)25
Vì 20084 có chữ số tận cùng là 6
Nên (20084)25 cũng có chữ số tận cùng là 6
Vậy 2008100 có chữ số tận cùng là 6

a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\sqrt{ }\)(có nghĩa là \(\div R\))
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = "
chúc bạn thành công
a) Để mình hướng dẫn nhé (máy tính cầm tay fx-570VN PLUS):
Ví dụ câu a:
Ta nhập vào máy tính như sau:
\(11^{12}\)rồi bạn bấm ALPHA rồi đến dấu \(\frac{ }{ }\)(có nghĩa là ÷R)
Rồi bạn bấm 2001, nó sẽ ra.
Lúc này màn hình đang hiển thị: \(11^{12}\div R2001\)Rồi ấn dấu " = ". Nó ra là: \(1568429973\)
chúc bạn thành công

b) \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)
\(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)=\left(\frac{x-95}{9}-1\right)\)\(+\left(\frac{x-93}{11}-1\right)\)
\(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)
\(\Leftrightarrow\left(x-104\right)\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)
Mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\ne0\)
\(\Rightarrow x-104=0\)
\(\Leftrightarrow x=104\)
Vậy ....
a) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)
\(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)\)\(+\left(\frac{x+1969}{69}-1\right)\)
\(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)
\(\Leftrightarrow\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)
Mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\)
\(\Rightarrow x+1900=0\)
\(\Leftrightarrow x=-1900\)
Vậy ...

a)
Ta có
\(4^{21}=\left(4^4\right)^5.4=\left(\overline{...6}\right)^5.4=\left(\overline{...6}\right).4=\left(\overline{....4}\right)\)
=> 4^21 có tận cùng là 4
b)
Ta có
\(9^{53}=\left(9^4\right)^{13}.9=\left(\overline{.....1}\right)^{13}.9=\left(\overline{.....1}\right).9=\left(\overline{....9}\right)\)
=> 9^93 có tận cùng là 9
c)
\(3^{103}=\left(3^4\right)^{25}.3^3=\left(\overline{.....1}\right)^{25}.27=\left(\overline{.....1}\right).27=\left(\overline{....7}\right)\)
=> 3^103 có tận cùng là 7
d)
\(8^{4n+1}=\left(8^4\right)^n.8=\left(\overline{....6}\right)^n.8=\left(\overline{......6}\right).8=\left(\overline{.....8}\right)\)
=> 8^4n+1 có tận cùng là 8
\(4^{21}=\left(...4\right)\)
Do: các số có tận cùng là 4 thì khi nâng lũy thừa bậc lẻ thì số tận cùng giữ nguyên.
\(9^{53}=...9\)
Do: các số có tận cùng là 9 thì khi nâng lũy thừa bậc 4n thì số tận cùng giữ nguyên.
\(3^{301}=3.3^{300}=3.\left(...1\right)=....3\)
Do: các số có tận cùng là 3 thì khi nâng lũy thừa bậc lẻ thì số tận cùng là 1.
\(8^{4n+1}=8.8^{4n}=8.\left(...6\right)=...8\)
Do: các số có tận cùng là 8 thì khi nâng lũy thừa bậc 4n thì số tận cùng là 6.
a) Ta có :
\(7^{1992}=\left(7^4\right)^{498}=2401^{498}=\left(......01\right)\)
\(\Rightarrow\) Chữ số tận cùng của \(7^{1992}\) là \(01\)
b) Ta có :
\(99^{101}=\left(9^2\right)^{50}.99=9801^{50}.99=\left(...01\right).99=\left(...99\right)\)
\(\Rightarrow2\) Chữ số tận cùng của \(99^{101}\) là 99
c) Ta có :
\(1945^{1945}=\left(1945^2\right)^{972}.1945=\left(......25\right)^{972}.1945=\left(....25\right)\)
\(\Rightarrow2\) Chữ số tận cùng của \(1945^{1945}\) là 25
d) Ta có :
\(24^{100}=\left(24^4\right)^{25}=331776^{25}=\left(.....76\right)\)
\(\Rightarrow\) 2 Chữ số tận cùng của \(24^{100}\) là 76
e) Ta có :
\(2^{1000}=\left(2^{20}\right)^{50}=1048576^{50}=\left(....76\right)\)
\(\Rightarrow2\) Chữ số tận cùng của \(2^{1000}\) là 76
a, Ta có:
\(7^1=7\)
\(7^2=49\)
\(7^3=343\\ 7^4=2401\\ 7^5=16807\)
.......
\(7^{4n}=.....01\)
\(7^{4n+1}=........07\) (với \(n\in N\))
mà \(1992⋮4\) nên nên tận 2 chữ số tận cùng của \(7^{1992}\) là 01.
Chúc bạn học tốt!!! Mấy câu còn lại làm tương tự!