Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Put \(A=2+2^2+2^3+...+2^{99}\)
Infer \(2A=2^2+2^3+2^4+...+2^{100}\)
\(\Rightarrow2A-A=2^2+2^3+2^4+...+2^{100}-2-2^2-2^3-...-2^{99}\)
\(\Rightarrow A=2^{100}-2\)
Easy to see \(2^{100}=2^{4.25}\)Excess cessation takes the form \(2^{4n}\)
So \(2^{100}\)has the end number as 6
Candlesk \(2^{100}-2\)has the end number as 4
So \(2+2^2+2^3+...+2^{99}\)has the end number as 4
(mk dùng kí hiệu \(\overline{...6}\) để chỉ số có tận cùng là 6 nha)
Ta có \(2^{1992}=\left(2^4\right)^{498}=\left(\overline{...6}\right)^{498}=\overline{..6}\)
=> \(3^{2^{1992}}=3^6=9\) (mod 10). (Dòng này mk dùng dấu "=" thay cho dấu đồng dư nha vì ko có dấu đồng dư)
Lại có \(9^{1992}=\left(9^4\right)^{498}=\left(\overline{...1}\right)^{498}=\overline{...1}\)
=> \(2^{9^{1992}}=2^1=2\) (mod 10) (dòng này cũng là dấu đồng dư)
Do đó chữ số tận cùng của \(3^{2^{1992}}-2^{9^{1992}}\) là 9 - 2 = 7
Đặt tổng trên là A
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(A=2A-A=2^{101}-2=2\left(2^{100}-1\right)\Rightarrow A=2^{100}-1\)
\(2^{100}=\left(2^4\right)^{25}=16^{25}\) có chữ số tận cùng là 6
\(\Rightarrow A=2^{100}-1\) có chữ số tận cùng là 5
\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)
Vậy \(3^{2^{2003}}\)có tận cùng là 9
Đây không phải là bài lớp 9