Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình khẳng định với bạn là đề bài sai bởi vì x2+2x+3 k đưa về dang hằng đẳng thức đc cũng như quy tách ra để tính đc
Đặt tổng trên là A
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(A=2A-A=2^{101}-2=2\left(2^{100}-1\right)\Rightarrow A=2^{100}-1\)
\(2^{100}=\left(2^4\right)^{25}=16^{25}\) có chữ số tận cùng là 6
\(\Rightarrow A=2^{100}-1\) có chữ số tận cùng là 5
\(\hept{\begin{cases}x^2=y^3-3y^2+2y\\y^2=x^3-3x^2+2x\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\x^2-y^2=y^3-x^3-3y^2+3x^2+2y-2x\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\2\left(y-x\right)\left(y+x\right)=\left(y-x\right)\left(y^2+xy+x^2\right)+2\left(y-x\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\\left(y-x\right)\left[xy+\left(x-1\right)^2+\left(y-1\right)^2\right]=0\end{cases}}\)
Theo Cauchy-schwarz có: \(\frac{\left(x-1\right)^2}{1}+\frac{\left(1-y\right)^2}{1}\ge\frac{\left(x-y\right)^2}{2}\)Dấu "=" xảy ra <=> x+y=2 (1)
\(\Rightarrow xy+\left(x-1\right)^2+\left(y-1\right)^2\ge xy+\frac{x^2-2xy+y^2}{2}=x^2+y^2\ge0\) Dấu bằng xảy ra <=> x=y=0 (2)
Từ (1) và (2) => \(xy+\left(x-1\right)^2+\left(y-1\right)^2>0\)
\(\Rightarrow x=y\)
=> Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\y^2=y^3-3y^2+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\0=y^3-4y^2+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\0=y^3-4y^2+2y\end{cases}}\)
Tự làm nốt nhé
Put \(A=2+2^2+2^3+...+2^{99}\)
Infer \(2A=2^2+2^3+2^4+...+2^{100}\)
\(\Rightarrow2A-A=2^2+2^3+2^4+...+2^{100}-2-2^2-2^3-...-2^{99}\)
\(\Rightarrow A=2^{100}-2\)
Easy to see \(2^{100}=2^{4.25}\)Excess cessation takes the form \(2^{4n}\)
So \(2^{100}\)has the end number as 6
Candlesk \(2^{100}-2\)has the end number as 4
So \(2+2^2+2^3+...+2^{99}\)has the end number as 4