K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

Câu trả lời hay nhất:  2^1000=(2^4)^250=(...6)^250 
vì các số có tận cùng là 0;1;5;6 khi nâng lên lũy thừa bậc mấy cũng vẫn có tận cùng là 0;1;5;6 nên 
(...6)^250 = ...6 
Vậy 2^2010 có tận cùng là 6

23 tháng 2 2016

tìm 2 chứ số tận cùng chứ bn

18 tháng 6 2019

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

18 tháng 6 2019

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)

4 tháng 3 2016

21000=24x250=(....6)

19 tháng 2 2016

21996-1 chia het cho 25=>24(21996-1) chia het cho 25 

ma 24(22996-1) chia het cho 4 lai co (4;25)=1=>24(21996-1) chia het cho 100=>24(21996-1)=100k

24(21996-1)+24=100k+16=>21000 co tan cung la 16
 

 2^1000=(2^4)^250=(...6)^250 
vì các số có tận cùng là 0;1;5;6 khi nâng lên lũy thừa bậc mấy cũng vẫn có tận cùng là 0;1;5;6 nên 
(...6)^250 = ...6 
Vậy 2^2010 có tận cùng là 6

2 tháng 9 2018

bạn ra đề khó quá

8 tháng 10 2016

kho quá

8 tháng 10 2016

3999 có 2 số tận cùng là 67

2 chữ số tận cùng là:08

22 tháng 8 2017

a6 Gọi hai chữ số tận cùng là ab

Ta có :

Các số tự có tận cùng 2,4,8 nâng lên lũy thừa 4n \(\left(n\ne0\right)\)đều có tận cùng là 6 

\(\Rightarrow\)Hai chữ số tận cùng của \(2^{2012}\)a6 

Ta có : \(2^{2012}\)= 2.2.2.2.  ....   . 2 

                               CÓ 2012 CHỮ SỐ 2 

Ta có   \(2^{2012}=2^{16}.2^{25}.2^3\) 

Mà \(2^{16}=.....36;2^{25}=......32;2^3=8\) 

\(\Rightarrow\)a6  = ...... 36 . ......32      .     ....... 8 =  ....16

Vậy ab = 36