Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x có tận cùng là 2 => 2x có tận cùng là 4; 3x có tận cùng 6
x; 2x ; 3x đều có 3 chữ số và 9 chữ số khác nhau => tổng các chữ số là x; 2x; 3x là : 1+ 2 + 3 + ...+ 9 = 45 chia hết cho 9
=> tổng x + 2x + 3x chia hết cho 9 => 6x chia hết cho 9 => x chia hết cho 3 => 3x chia hết cho 9
Gọi số 3x có dạng ab6 => a + b + 6 chia hết cho 9
Vì x; 2x; 3x có các chữ số khác nhau => a; b \(\in\) {1;3;5;7;8; 9} => 4 \(\le\)a+ b \(\le\) 17
mà a + b + 6 chia hết cho 9 => a + b = 12 = 5 + 7 = 3 + 9
Xét các trường hợp:
+) a = 3; b = 9 => 3x = 396 => x = 132 => 2x = 264 (Loại)
+) a = 9; b = 3 => 3x = 936 => x = 312 => 2x = 624 (Loại)
+) a = 5; b = 7 => 3x = 576 => x = 192 => 2x = 384 (Thỏa mãn)
+) a = 7; b = 5 => 3x = 756 => x = 252 (loại)
vậy x = 192
Ta có:5 đồng dư với 1(mod 4)
\(\Rightarrow\)512 đồng dư với 1(mod 4)
Đặt 512=4k+1(k thuộc N)
\(\Rightarrow17^{5^{12}}=17^{4k+1}\)
Bn làm tiếp