Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z\).
\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)
Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=xy+yz+xz\)
\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)
\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)
\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)
Ta có đpcm
gọi 2 số đó là a; a + 2 (a thuộc N; a chẵn)
có a^2 - (a + 2)^2 = 68
=> a^2 - a^2 - 4a - 4 = 68
=> -4a - 4 = 68
=> -4a = 72
=> a = 18
=> a + 2 = 20
Gọi số tiền ban đầu của An và Bình lần lượt là x và y (đồng)
Theo đề bài An và Bình ban đầu có tất cả 520000đ suy ra: x+y=520000 (đ) (1)
An mua vở hết 1/5 số tiền của mình => số tiền An còn lại là 4/5x (đ)
Bình mua sách hết 1/8 số tiền của mình => sốt tiền Bình còn lại là 7/8y (đ)
Theo đề bài số tiền còn lại của Bình hơn số tiền còn lại của An là 120000 suy ra: 7/8y - 4/5x=120000 (2)
Từ (1) và (2) ta có hệ PT...
Đáp số x=200000đ, y=320000đ
3)+giả sử aabb=n^2
<=>a.10^3+a.10^2+b.10+b=n^2
<=>11(100a+b)=n^2
=>n^2 chia hết cho 11
=>n chia hết cho 11
do n^2 có 4 chữ số nên
32<n<100
=>n=33,n=44,n=55,...n=99
thử vào thì n=88 là thỏa mãn
vậy số đó là 7744
2)
a
v
à
b
l
ẻ
n
ê
n
a
=
2k+1,
b
=
2m+1
(V
ớ
i
k,
m
N)
a
2
+
b
2
=
(2k+1)
2
+
(2m+1)
2
=
4k
2
+
4k
+
1
+
4m
2
+
4m
+
1
=
4(k
2
+
k
+
m
2
+
m)
+
2
=
4t
+
2
(V
ớ
i
t
N)
Kh
ô
ng
c
ó
s
ố
ch
í
nh
ph
ươ
ng
n
à
o
c
ó
d
ạ
ng
4t
+
2
(t
N)
do
đó
a
2
+
b
2
kh
ô
ng
th
ể
l
à
s
ố
ch
í
nh
ph
ươ
ng
Câu 1: \(P=\frac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\frac{x^2+x+1+2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{x^2+x+1}{3\left(x^2+x+1\right)}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)
= \(\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\), với mọi x. Dấu = xảy ra khi x- 1 =0 <=> x =1
Vậy Min P = 1/3 <=> x = 1
Tìm Max : \(P=\frac{3x^2+3x+3-2\left(x^2+2x+1\right)}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\),với mọi x,
Dấu = xảy ra <=> x +1 = 0 <=> x = - 1
Vậy max P = 3 <=> x = -1