Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{ab3}=\dfrac{3}{4}\overline{3ab}\)
\(\Rightarrow4.\overline{ab3}=3.\overline{3ab}\)
\(\Rightarrow4\left(10.\overline{ab}+3\right)=3\left(300+\overline{ab}\right)\)
\(\Rightarrow40.\overline{ab}+12=900+3.\overline{ab}\)
\(\Rightarrow900-12=40\overline{ab}-3\overline{ab}\)
\(\Rightarrow888=37\overline{ab}\)
\(\Rightarrow\overline{ab}=888:37=24\)
Ta có: \(\overline{ab3}=\dfrac{3}{4}\overline{3ab}\)
\(\Leftrightarrow10\overline{ab}+3=\dfrac{3}{4}\left(300+\overline{ab}\right)\)
\(\Leftrightarrow10\overline{ab}+3=\dfrac{3}{4}.300+\dfrac{3}{4}\overline{ab}\)
\(\Leftrightarrow10\overline{ab}-\dfrac{3}{4}\overline{ab}=225-3\)
\(\Leftrightarrow\dfrac{37}{4}\overline{ab}=222\)
\(\Leftrightarrow\overline{ab}=222:\dfrac{37}{4}=222.\dfrac{4}{37}=24\)
Vậy \(\overline{ab}\) = 24.
ta có :ab/5 dư 1 => b=1 hoặc 6
Trường hợp 1 :a1-1a=3* => a=5 ;*=6 (thỏa mãn)
Trường hợp 2 :a6-6a=3* ta thấy không có số a nào thỏa mãn
Vậy ab=51 ;*=6
\(\overline{abc}-\overline{cba}=100.a+10.b+c-100.c-10.b-a=99.a-99.c=\)
\(=99\left(a-c\right)=495\Rightarrow a-c=5\)
=> a.c xảy ra các trường hợp sau 6.1=6; 7.2=14; 8.3=24; 9.4=36
Ta có \(b^2=a.c\) nên a.c phải là 1 số chính phương => a=9 và b=4
\(\overline{abc}=\left\{904;914;...;994\right\}\)
Đề sai; giải sửa luôn nhá
\(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}100a+10b+c=n^2-1\\100c+10b+a=n^2-4n+4\end{cases}}\)
\(\Rightarrow\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)
\(\Leftrightarrow99a-99c=4n-5\)
\(\Leftrightarrow99\left(a-c\right)=4n-5\Rightarrow4n-5⋮99\)
Ta thấy \(100\le\overline{abc}=n^2-1\le999\Leftrightarrow101\le n^2\le1000\Leftrightarrow10< n< 31\)
\(\Rightarrow45< 4n-5< 119\Rightarrow4n-5=99\Rightarrow n=26\)
\(\Rightarrow\overline{abc}=26^2-1=675\)
Vậy \(\overline{abc}=675\)
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
Vì \(\overline{a3b}\) \(=\dfrac{3}{4}\cdot\overline{3ab}\)
\(\Rightarrow\overline{a3b}=\overline{3ab}\cdot\dfrac{3}{4}\)
\(\Rightarrow\overline{10ab}+3=\left(300+\overline{ab}\right)\cdot\dfrac{3}{4}\)
\(\Rightarrow\overline{10ab}+3=225+\dfrac{3}{4}\cdot\overline{ab}\)
\(\Rightarrow\overline{10ab}-\dfrac{3}{4}\cdot\overline{ab}=225-3\)
\(=>\dfrac{37}{4}\cdot\overline{ab}=222\)
\(\Rightarrow\overline{ab}=222\text{ }:\text{ }\dfrac{37}{4}=24\)
Vậy số cần tìm là 24
Sai!