Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm 1 đa thức có hệ số nghiệm bậc 7 nhận x=\(\sqrt[7]{\frac{2}{3}}+\sqrt[7]{\frac{5}{2}}\) là nghiệm
tìm 1 đa thức có hệ số nguyên bậc 7 nhận x=\(\sqrt[7]{\frac{2}{5}}+\sqrt[7]{\frac{5}{2}}\) là nghiệm
Đặt \(a=\sqrt[7]{\frac{2}{5}}\Rightarrow x=a+\frac{1}{a}\Rightarrow\left\{{}\begin{matrix}x^2=a^2+\frac{1}{a^2}+2\\x^3=a^3+\frac{1}{a^3}+3x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2-2=a^2+\frac{1}{a^2}\\x^3-3x=a^3+\frac{1}{a^3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^4-4x^2+4=a^4+\frac{1}{a^4}+2\\x^3-3x=a^3+\frac{1}{a^3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^4-4x^2+2=a^4+\frac{1}{a^4}\\x^3-3x=a^3+\frac{1}{a^3}\end{matrix}\right.\)
\(\Rightarrow\left(x^4-4x^2+2\right)\left(x^3-3x\right)=\left(a^4+\frac{1}{a^4}\right)\left(a^3+\frac{1}{a^3}\right)\)
\(\Leftrightarrow x^7-7x^5+14x^3-6x=a^7+\frac{1}{a^7}+a+\frac{1}{a}\)
\(\Leftrightarrow x^7-7x^5+14x^3-6x=\frac{2}{5}+\frac{5}{2}+x\)
\(\Leftrightarrow x^7-7x^5+14x^3-7x-\frac{29}{10}=0\)
\(\Leftrightarrow10x^7-70x^5+140x^3-70x-29=0\)
Đây là 1 trong những pt có hệ số nguyên cần tìm
bài 1 : a) ta có : \(a=\sqrt{2}+\sqrt{7\sqrt[3]{61+46\sqrt{5}}}+1=\sqrt{2}+\sqrt{7\sqrt[3]{\left(1+2\sqrt{5}\right)^3}}+1\)
\(=\sqrt{2}+\sqrt{7+14\sqrt{5}}+1\)
ta có : \(a^4-14a^2+9=0\Leftrightarrow\left(a^2\right)-14a^2+9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a^2=7+2\sqrt{10}\\a^2=7-2\sqrt{10}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=89+28\sqrt{10}\\a=89-28\sqrt{10}\end{matrix}\right.\)
\(\Rightarrow\) đề sai
sữa đề rồi mk sẽ lm .
bài 2 : a) ta có : \(a=\dfrac{\sqrt[3]{7+5\sqrt{2}}}{\sqrt{4+2\sqrt{3}}-\sqrt{3}}=\dfrac{\sqrt[3]{\left(\sqrt{2}+1\right)^3}}{\sqrt{\left(\sqrt{3}+1\right)^2}-3}=\sqrt{2}+1\)
+) ta có phương trình bật nhất thì chắc chắn không được .
+) phương trình bậc 2 : số liên hợp có tổng nguyên của nó là : \(1-\sqrt{2}\)
\(\Rightarrow\) \(\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)=1-2=-1\) và \(1-\sqrt{2}+1+\sqrt{2}=2\)
theo vi ét đảo \(\Rightarrow\) \(1+\sqrt{2}\) và \(1-\sqrt{2}\) là nghiệm của \(X^2-2X-1=0\)
b) ta có : \(3x^6+4x^5-7x^4+6x^3+6x^2+x-53\sqrt{2}\)
\(=3x^6-6x^5-3x^4+10x^5-20x^4-10x^3+16x^4-32x^3-16x^2+48x^3-96x^2-48x+118x^2+49x+58\sqrt{2}\)
\(=3x^4\left(x^2-2x-1\right)+10x^3\left(x^2-2x-1\right)+16x^2\left(x^2-2x-1\right)+48x\left(x^2-2x-1\right)+118x^2+49x+58\sqrt{2}\)
\(=118a^2+49a+58\sqrt{2}\)
\(=118\left(1+\sqrt{2}\right)^2+49\left(1+\sqrt{2}\right)+58\sqrt{2}\)
\(=118\left(3+2\sqrt{2}\right)+49+49\sqrt{2}+58\sqrt{2}\)
\(=403+343\sqrt{2}\)
a/ \(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}=\dfrac{2\left(\sqrt{7}+5\right)}{-18}-\dfrac{2\left(\sqrt{7}-5\right)}{-18}=\dfrac{-\sqrt{7}-5+\sqrt{7}-5}{9}=\dfrac{-10}{9}\)
--> biểu thức trên là số hữu tỉ (đpcm)
b/ \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\dfrac{\left(\sqrt{7}+\sqrt{5}\right)^2}{2}+\dfrac{\left(\sqrt{7}-\sqrt{5}\right)^2}{2}=\dfrac{24}{2}=12\)
--> biểu thức trên là số hữu tỉ (đpcm)
Bài 3 nhé bạn đặt cái căn đầu là a ,căn sau là b
a+b=x
ab=1
Rồi tính lần lượt a3 +b3 bằng ẩn x hết
và mũ 4 cũng vậy rồi lấy 2 số nhân nhau .Bđ là ra