Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
\(d,\text{ }8^{4n+1}=8^{4n}\cdot8=\left(8^4\right)^n\cdot8=\overline{\left(...6\right)}^n\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)
Vậy chữ số tận cùng của \(8^{4n+1}\) là 8
\(e,\text{ }14^{23}+23^{23}+70^{23}=14^{22}\cdot14+23^{20}\cdot23^3+70^{23}=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+70^{23}\)
\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}^3+\overline{\left(...0\right)}^{23}\)
\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...4\right)}+\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của tổng trên là 3
Bài giải
\(b,\text{ }14^{23}+23^{23}+76^{23}\)
\(=14^{22}\cdot14+23^{20}\cdot23^3+76^{23}\)
\(=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+76^{23}\)
\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}+\overline{\left(...6\right)}\)
\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...3\right)}+\overline{\left(...6\right)}\)
\(=\overline{\left(...4\right)}+\overline{\left(...3\right)}+\overline{\left(...6\right)}\)
\(=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của tổng trên là 3
Đặt A=\(14^{23}+23^{23}+70^{23}\)
A=\(14^{22}\cdot14+23^{20}\cdot23^2\cdot23+70^{23}\)
A=\(\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^2\cdot23+70^{23}\)
A=\(196^{11}\cdot14+\left(....1\right)^5\cdot529\cdot23+70^{23}\)
A=\(\left(.....6\right)\cdot14+\left(....1\right)\cdot529\cdot23+\left(....0\right)\)
A=\(\left(......4\right)+\left(.....7\right)+\left(......0\right)\)(nhân các chữ số tận cùng lại)
A=\(\left(.......1\right)\)
Vậy A có chữ số tận cùng là 1
a) Ta có:
C = 5/18 + 8/19 - 7/21 + (-10/36 + 11/19 + 1/3) - 5/8
C = 5/18 + 8/19 - 1/3 - 5/18 + 11/19 + 1/3 - 5/8
C = (5/18 - 5/18) + (8/19 + 11/19) - (1/3 - 1/3) - 5/8
C = 1 - 5/8
c = 3/8
b) F = 15/14 - (17/23 - 80/87 + 5/4) + (17/23 - 15/14 + 1/4)
F = 15/14 - 17/23 + 80/87 - 5/4 + 17/23 - 15/14 + 1/4
F = (15/14 - 15/14) - (17/23 - 17/23) + 80/87 - (5/4 - 1/4)
F = 80/87 - 1
F = -7/87
c) G = 1/25 - 4/27 + (-23/27 + -1/25 - 5/43) + 5/43 - 4/7
G = 1/25 - 4/27 - 23/27 - 1/25 - 5/43 + 5/43 - 4/7
G = (1/25 - 1/25) - (4/27 + 23/27) - (5/43 - 5/43) - 4/7
G = -1 - 4/7 = -11/7
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
a, Ta có: \(4^{21}=4^{20}.4=\left(4^4\right)^5.4=\left(\overline{...6}\right).4=\overline{...4}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
b, Ta có: \(9^{53}=9^{52}.9=\left(9^4\right)^{13}.9=\left(\overline{...1}\right).9=\overline{...9}\)
Vậy \(9^{53}\) có tận cùng là 9
c, Ta có: \(8^{4n+1}=\left(8^4\right)^n.8=\left(\overline{...6}\right).8=\overline{...8}\)
Vậy \(8^{4n+1}\) có tận cùng là 8
d, Ta có: \(14^{23}+23^{23}+70^{23}=14^{22}.14+23^{20}.23^2.23+70^{23}\)
\(=\left(14^2\right)^{11}.14+\left(23^4\right)^5.529.23+70^{23}\)
\(=196^{11}.14+\left(\overline{...1}\right).529.23+70^{23}\)
\(=\left(\overline{...6}\right).14+\left(\overline{...7}\right)+70^{23}=\left(\overline{...4}\right)+\left(\overline{...7}\right)+\left(\overline{...0}\right)=\overline{...1}\)
Vậy biểu thức trên có tận cùng là 1