Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}=1-\dfrac{\left(x-1\right)^2}{x^2+2}\le1\)
\(C_{max}=1\) khi \(x=1\)
\(C=\dfrac{4x+2}{2\left(x^2+2\right)}=\dfrac{-x^2-2+x^2+4x+4}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+2\right)^2}{x^2+2}\ge-\dfrac{1}{2}\)
\(C_{min}=-\dfrac{1}{2}\) khi \(x=-2\)
Nhập Mode 7 , chạy trong khoản trung lập (-10;10)
tìm đc \(\begin{cases} C max = 1 khi x=1\\C min =-\dfrac{1}{2} khi x=-2 \end{cases}\)
Dùng cách này bạn giải trắc nghiệm sẽ nhanh hơn
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x^2+3x+1-2x^2-x+3=0\)
=>2x=-4
hay x=-2
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right).\left(-2x+x^2\right)=1\)
\(\Leftrightarrow\left(-2x+x^2\right)^5=1\)
\(\Leftrightarrow-2x+x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=1-\sqrt{2}\\x=\sqrt{2}+1\end{cases}}\)
Vậy \(x=1-\sqrt{2}\) hoặc \(x=\sqrt{2}+1\)
a: \(\Leftrightarrow x^2+6x+9+x^2-4-2x-2=7\)
\(\Leftrightarrow2x^2+4x-4=0\)
\(\Leftrightarrow x^2+2x-2=0\)
\(\Leftrightarrow x^2+2x+1-3=0\)
\(\Leftrightarrow\left(x+1\right)^2=3\)
hay \(x\in\left\{-\sqrt{3}-1;\sqrt{3}-1\right\}\)
b: \(\Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\)
\(\Leftrightarrow2x^2-x-2x^2+x+6=0\)
=>6=0(vô lý)
c: \(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
=>x=-2 hoặc x=2
đ: \(\Rightarrow2x^2-2x-5x+5=0\)
=>(x-1)(2x-5)=0
=>x=1 hoặc x=5/2
a) \(\left(2x+1\right)\left(1-2x\right)+\left(2x-1\right)^2=22\)
\(\Rightarrow\left(1+2x\right)\left(1-2x\right)+\left[\left(2x\right)^2-2.2x+1^2\right]=22\)
\(\Rightarrow1^2-\left(2x\right)^2+\left(4x^2-4x+1\right)=22\)
\(\Rightarrow1-4x^2+4x^2-4x+1=22\)
\(\Rightarrow2-4x=22\)
\(\Rightarrow-4x=22-2=20\)
\(\Rightarrow x=20:\left(-4\right)=-5\)
b/ \(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2.\left(x+1\right)^2=0\)
\(\Rightarrow\left(x^2-2.x.5+5^2\right)+\left(x^2-3^2\right)+2.\left(x^2+2.x.1+1^2\right)=0\)
\(\Rightarrow x^2-10x+25+x^2-9-2\left(x^2+2x+1\right)=0\)
\(\Rightarrow x^2-10x+25+x^2-9-2x^2-4x-2=0\)
\(\Rightarrow-14x+14=0\)
\(\Rightarrow-14x=0-14=-14\)
\(\Rightarrow x=\left(-14\right):\left(-14\right)=1\)
b/\(\left(x-5\right)^2+\left(x-3\right)\left(x+3\right)-2\left(x+1\right)^2=0\)
\(\Leftrightarrow x^2-10x+25+x^2-3^2-2\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2-10x+25+x^2-9-2x^2-4x-2=0\)
\(\Leftrightarrow14x=14\Leftrightarrow x=1\)
c/\(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)=0\)
\(\Leftrightarrow4x^2+12x+9+4x^2-12x+9-8x^2+18=0\)
\(\Leftrightarrow0x=-36\Leftrightarrow x=0\)
a/\(\left(2x+1\right).\left(1-2x\right)+\left(2x-1\right)^2=22\Leftrightarrow2x-4x^2+1-2x+4x^2-4x+1=22\Leftrightarrow-4x=20\Leftrightarrow x=-5\)
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(2x\left(-2x+1\right)-2x^2=2\\ \Leftrightarrow-4x^2+2x-2x^2=2\\ \Leftrightarrow-6x^2+2x-2=0\\ \Leftrightarrow x\in\varnothing\left(-6x^2+2x-2=-6\left(x^2-2\cdot\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{11}{36}\right)=-6\left(x-\dfrac{1}{6}\right)^2-\dfrac{11}{6}< 0\right)\)