K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

Đặt \(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+.........+\frac{1}{1+2+....+n}\)

Ta có: \(1+2=\frac{2.3}{2}\)\(1+2+3=\frac{3.4}{2}\)\(1+2+3+4=\frac{4.5}{2}\); .......... ; \(1+2+.......+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow A=1+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+.......+\frac{1}{\frac{n\left(n+1\right)}{2}}\)

\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.......+\frac{2}{n\left(n+1\right)}\)

\(=1+2.\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{n\left(n+1\right)}\right]\)

\(=1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+........+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=1+2.\left(\frac{1}{2}-\frac{1}{n+1}\right)=1+1-\frac{2}{n+1}=2-\frac{2}{n+1}\)

Để A có GTNN thì \(\frac{2}{n+1}\)phải có GTLN \(\Rightarrow n+1\)phải có GTNN

mà \(n>1\)\(\Rightarrow n+1>2\)\(\Rightarrow min\left(n+1\right)=3\)\(\Leftrightarrow n=2\)

\(\Rightarrow A=2-\frac{2}{1+2}=2-\frac{2}{3}=\frac{4}{3}\)

Vậy \(minA=\frac{4}{3}\Leftrightarrow n=2\)

28 tháng 6 2015

mình chỉ làm đc câu a và d thôi bạn có **** k? nếu **** thì liên hệ mình làm cho

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

Trừ theo vế:

\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)

\(4B=5^{2010}-1\)

\(B=\frac{5^{2010}-1}{4}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)

\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)

Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)

\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)

Trừ theo vế:

\(3X-X=3^n-3^0=3^n-1\)

\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)

ta có A lớn  hơn hoặc bằng 3 dấu "=" sảy ra khi (n-1).n.(n+1).(n+2)=0

vậy min a=3 khi n=0

19 tháng 9 2018

Bài 1:

\(A=2x+2y-y\)

\(A=2x+y\)

Thay x = 2,5 và y = 3/4 vào A

\(A=2.2,5+\dfrac{3}{4}\)

\(A=5+\dfrac{3}{4}\)

\(A=\dfrac{23}{4}\)

\(B=\dfrac{5a}{3}-\dfrac{3}{b}\)

Thay a = 1/3 và b = 0,25 vào B

\(B=\dfrac{5.\dfrac{1}{3}}{3}-\dfrac{3}{0,25}\)

\(B=\dfrac{5}{9}-12\)

\(B=-\dfrac{103}{9}\)

Bài 2:

a) \(\left(2x-\dfrac{1}{2}\right).2+\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}\right):\dfrac{1}{8}=1\)

\(\Rightarrow4x-1+\dfrac{26}{3}=1\)

\(\Rightarrow4x+\dfrac{23}{3}=1\)

\(\Rightarrow4x=1-\dfrac{23}{3}\)

\(\Rightarrow4x=-\dfrac{20}{3}\)

\(\Rightarrow x=-\dfrac{5}{3}\)

b) \(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)

\(\Rightarrow\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1=\dfrac{x+5}{61}+1+\dfrac{x+7}{59}+1\)

\(\Rightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}=\dfrac{x+66}{61}+\dfrac{x+66}{59}\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)=\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(x+66\right)\left(\dfrac{1}{61}+\dfrac{1}{59}\right)=0\)

\(\Rightarrow\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)

\(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\ne0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=-66\)

Bài 3:

\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{n}\right)\)

\(A=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{n-1}{n}\)

\(A=\dfrac{1}{n}\)