Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d = 20 mm
E = 2.1011 Pa
Fnén = 1,57.105 N
Tìm \(\varepsilon=\dfrac{\left|\Delta t\right|}{l_0}=?\)
Ta có: \(F=k\Delta l=\dfrac{ES}{l_0}\left|\Delta t\right|\)
\(\Rightarrow\dfrac{\Delta l}{l_0}=\dfrac{F}{ES}=25.10^4=0,25.10^{-2}\)
Vậy độ biến dạng tỉ đối của thanh là : \(\dfrac{\left|\Delta l\right|}{l_0}=2,5.10^{-3}\)
Ta có : F = k△l = \(\frac{E.S}{l_0}\). | △l |
→ \(\frac{\triangle l}{l_0}=\frac{F}{E.S}=\frac{157.10^3}{2.10^{11}.\left(10^{-2}\right)^2.3,14}=25.10^{-4}=0,25.10^{-2}\)
Vậy độ biến dạng tỉ đối của thanh là \(\frac{\triangle l}{l_0}=0,25.10^{-2}\)
@phynit
Em trả lời 100% . Không có sự tự hỏi tự trả lời đâu ạ ( Em nói để thầy biết và không nghĩ oan cho em )
Ta có : F = k\(\triangle\)l = \(\frac{E.S}{l_o}\). | \(\triangle\)l |
→ \(\frac{\triangle l}{l_0}=\frac{F}{E.S}=\frac{157.10^3}{2.10^{11}.\left(10^{-2}\right)^2.3,14}\)= 25 . 10-4 = 0,25 .10-2
Vậy độ biến dạng tỉ đối của thanh là \(\frac{\triangle l}{l_0}\)= 0,25 . 10-2
a/ Chiều dài của thanh: \(l=l_0(1+\alpha.\Delta t)\)
Thanh nhôm: \(l=50.[1+24.10^{-6}.(170-20)]=50,18cm\)
Thanh thép: \(l=50,12.[1+12.10^{-6}.(170-20)]=50,21cm\)
b/ Giả sử ở nhiệt độ t, hai thanh có cùng chiều dài
\(\Rightarrow 50.[1+24.10^{-6}.(t-20)]=50,12.[1+12.10^{-6}.(t-20)]\)
Bạn giải phương trình trên rồi tìm t nhé
\(\alpha_1< \alpha_2\Rightarrow l_1< l_2\)
\(\Rightarrow l_2-l_1=l_o\left[1+\alpha_2\left(t-t_o\right)-1-\alpha_1\left(t-t_o\right)\right]\)
\(\Rightarrow l_o=\frac{l_2-l_1}{t\left(\alpha_2-\alpha_1\right)}=1000mm\)
ai ai giúp mình với...mình cần trả lời gấp....mình sắp thi rồi
Gọi:
l, l0 lần lượt là chiều dài của thanh thép ở 200C và 300C
Δl độ co của thanh thép khi nhiệt độ giảm từ 300 xuống 200C
+ Ta có: ∆ l = l - l 0 = α l 0 ∆ t (1)
+ Mặt khác, theo định luật Húc, ta có: F = E S l 0 ∆ l (1)
Từ (1) và (2), ta có: F = E S α ∆ t = 2 , 28 . 10 11 . 1 , 3 . 10 - 4 . 11 . 10 - 6 . 10 = 3260 N
Vậy lực tác dụng vào thanh khi nhiệt độ giảm xuống còn 200C là F = 3260N
Đáp án: D