Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Để thỏa mãn tính chất tiếp tuyến của đồ thị hàm số tại điểm có hoành độ là nghiệm của phương trình y ' ' x = 0 là một đường thẳng song song với trục hoành thì hàm số phải thỏa mãn điều kiện:
Nghiệm của phương trình y ' ' x = 0 là nghiệm của phương trình y ' x = 0 .
Với A: y ' = 3 x 2 − 6 x + 1 ; y ' ' = 6 x − 6 .
y ' ' = 0 ⇔ x = 1 không là nghiệm của phương trình . y ' = 0 Vậy A không thỏa mãn.
Với B: y ' = 3 x 2 − 6 x − 1 ; y ' ' = 6 x − 6 . Tương tự B không thỏa mãn.
Với C: y ' = 3 x 2 − 6 x + 3 ; y ' ' = 6 x − 6 .
y ' ' = 0 ⇔ x = 1 là nghiệm của phương trình y ' = 0 thỏa mãn, vậy ta chọn C.
Đáp án C
Phương pháp : Xét từng mệnh đề.
Cách giải:
(I) sai. Ví dụ hàm số có đồ thị hàm số như sau:
õ ràng
(II) đúng vì y ' = 4 a x 3 + 2 b x = 0 luôn có một nghiệm x = 0 nên đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III) Gọi x 0 là 1 điểm cực trị của hàm số => Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0 là: luôn song song với trục hoành.
Vậy (III) đúng.
Đáp án B.
Phương trình đường thẳng d : y = m x + 2 + 2 .
Phương trình hoành độ giao điểm của và d:
2 x + 1 x − 1 = m x + 2 + 2 ⇒ m x 2 + m x − 2 m − 3 = 0 (*).
Để (H) và d cắt nhau tại hai điểm phân biệt thì (*) phải có hai nghiệm phân biệt ⇔ m ≠ 0 Δ > 0 ⇔ m ≠ 0 9 m 2 + 12 > 0 (**). Gọi là hai nghiệm của (*).
Khi đó M = x 1 ; m x 1 + 2 + 2 , N = x 2 ; m x 2 + 2 + 2 .
Hai cạnh của hình chữ nhật tạo bởi bốn đường thẳng như đã cho trong bài là x 2 − x 1 và m x 2 − x 1 . Hình chữ nhật này là hình vuông khi và chỉ khi m x 2 − x 1 = x 2 − x 1 ⇔ m = 1 ⇔ m = ± 1 . Ta thấy chỉ có M=1 thỏa mãn (**).
Vậy chỉ có một giá trị của m thỏa mãn yêu cầu bài toán. Chọn đáp án B.
Đáp án A
Ta có y ' = 3 a − 2 b b x + 3 2 với ∀ x ≠ − 3 b
Theo đề bài ta có hệ phương trình − 4 = − 2 a + 2 − 2 b + 3 7 = 3 a − 2 b − 2 b + 3 2
⇔ a + 4 b = 7 3 a − 2 b = 7 3 − 2 b 2 ⇔ a + 4 b = 7 3 a − 2 b = 7 3 − 2 b 2
⇔ a = 7 − 4 b 3 7 − 4 b − 2 b = 7 3 − 2 b 2 ⇔ a = 7 − 4 b 28 b 2 − 70 b + 42 = 0
⇔ a = 7 − 4 b b = 1 t / m b = 3 2 l o a i
Khi b = 1 thì a = 3 ⇒ a − 3 b = 0 .
Chọn đáp án C
=> Phương trình tiếp tuyến tại điểm cực tiểu của đồ thị hàm số là y = -5
Vậy tiếp tuyến tại điểm cực tiểu của đồ thị hàm số song song với trục hoành.
MEMORIZE
Tiếp tuyến (nếu có) tại các điểm cực trị của đồ thị hàm số bất kì là các đường thẳng song song hoặc trùng với trục hoành.