Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ phương trình (1): x – my = m ⇔ x = m + my thế vào phương trình (2) ta được phương trình:
m (m + my) + y = 1
⇔ m 2 + m 2 y + y = 1 ⇔ ( m 2 + 1 ) y = 1 – m 2 ⇔ y = 1 − m 2 1 + m 2
(vì 1 + m 2 > 0 ; ∀ m ) suy ra x = m + m . 1 − m 2 1 + m 2 = 2 m 1 + m 2 với mọi m
Vậy hệ phương trình luôn có nghiệm duy nhất ( x ; y ) = 2 m 1 + m 2 ; 1 − m 2 1 + m 2
⇒ x – y = 2 m 1 + m 2 − 1 − m 2 1 + m 2 = m 2 + 2 m − 1 1 + m 2
Đáp án: B
\(x^2-2\left(m+4\right)x+m^2+8m-9=0\left(1\right)\)
Ta giải \(\Delta=[-2\left(m+4\right)]^2-4\left(m^2+8m-9\right)=100>0\forall m\)
suy ra pt có 2 nghiệm phân biệt \(x_1,x_2\forall m\).
Ta có: \(x_1=m-1\), \(x_2=m+1\) (thay \(\Delta\) vào công thức tìm nghiệm phân biệt).
Gọi \(A=\dfrac{x_1^2+x_2^2-48}{x_1^2+x_2^2}\).
\(\Rightarrow A=1-\dfrac{48}{x_1^2+x_2^2}=1-\dfrac{48}{\left(m-1\right)^2+\left(m+1\right)^2}=1-\dfrac{24}{m^2+1}\).
Để biểu thức A nguyên thì \(\dfrac{24}{m^2+1}\) nguyên, suy ra \(m^2+1\inƯ\left(24\right)\).
\(\Rightarrow m^2+1\in\left\{1;2;4;6;8;12;24\right\}\)
\(\Rightarrow m\in\left\{0;\pm1\right\}\) (vì m nhận giá trị nguyên)
Vậy \(m\in\left\{0;\pm1\right\}\) là giá trị cần tìm.
Mình chỉnh sửa lại một chút nhé.
\(A=1-\dfrac{24}{m^2+2}\)
\(\Rightarrow...\)\(\Rightarrow\)\(m^2+2\in\left\{1;2;3;4;6;8;12;24\right\}\)
\(\Rightarrow m\in\left\{0;\pm1;\pm2\right\}\)
Vậy...
Gọi vận tốc xe đạp là V, vận tốc xe máy là V1
Gọi thời gian từ lúc xe máy xuất phát đến lúc gặp nhau là: t
Thời gia từ lúc xe đạp xuất phát đến lúc xe máy xuất phát là: 8h30-7h=1h30'=1,5h
Gọi điểm gặp nhau là C, ta có: AB=AC+CB
AC=1,5V+V.t=0,5V1
BC=2V=V1.t
=> AB=0,5V1+2V=1,5V+V.t+V1.t
<=> 0,5V1+0,5V=V.t+V1.t
<=> 0,5(V1+V)=(V+V1).t => t=0,5 (giờ)
=> Thời gian xe đạp đi hết quãng đường AB là: 1,5+0,5+2=4 (giờ)
Thời gian xe máy đi hết quãng đường AB là: 0,5+0,5=1 (giờ)
Từ (m – 1) x + y = 2 thế vào phương trình còn lại ta được phương trình:
mx + 2 – (m – 1) x = m + 1 ⇔ x = m – 1 suy ra y = 2 – ( m – 1 ) 2 với mọi m
Vậy hệ phương trình luôn có nghiệm duy nhất ( x ; y ) = ( m – 1 ; 2 – ( m – 1 ) 2 )
2 x + y = 2 ( m – 1 ) + 2 – ( m – 1 ) 2 = − m 2 + 4 m – 1 = 3 – ( m – 2 ) 2 ≤ 3 với mọi m
Đáp án: A
1000 : ( 48 - x ) - 18 = 82
1000 : ( 48 - x ) = 82 + 18
1000 : ( 48 - x ) = 100
48 - x = 1000 : 100
48 - x = 10
=> x = 48 - 10
=> x = 38
1000 : (48 - x) - 18 = 82
1000 : (48 - x) = 82 + 18 = 100
48 - x = 1000 : 100
48 - x = 10
x = 48 - 10
x = 38