Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y-x^2y-2xy^2-y^3\)
= \(-y\left(x^2-2xy+y^2-1\right)\)
= \(-y\left[\left(x-y\right)^2-1\right]\)
= \(-y\left(x-y-1\right)\left(x-y+1\right)\)
y-x2y-2xy2-y3
=y(1-x2-2xy-y2)
=y[1-(x2+2xy+y2)]
=y[1-(x+y)2]
=y(1-x-y)(1+x+y)
a) x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y )( x + 2 + y )
b) x2 - 2xy + y2 - 1
= ( x2 - 2xy + y2 ) - 1
= ( x - y )2 - 12
= ( x - y - 1 )( x - y + 1 )
c) x2 - 2xy + y2 - 4
= ( x2 - 2xy + y2 ) - 4
= ( x - y )2 - 22
= ( x - y - 2 )( x - y + 2 )
d) x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
e) 25 - x2 + 4xy - 4y2
= 25 - ( x2 - 4xy + 4y2 )
= 52 - ( x - 2y )2
= ( 5 - x + 2y )( 5 + x - 2y )
f) x2 + y2 - 2xy - 4z2
= ( x2 - 2xy + y2 ) - 4z2
= ( x - y )2 - ( 2z )2
= ( x - y - 2z )( x - y + 2z )
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
\(x^2-y^2-2xy+y^2\)
\(=x^2-2xy+y^2-y^2\)
\(=\left(x-y\right)^2-y^2\)
\(=\left(x-y-y\right)\left(x-y+y\right)\)
\(=\left(x-2y\right)\left(x\right)\)
[(x2-2xy+2xy2).(x+2y)-(x2+4y2).(x-y)]2xy
=( x3 + 2x2y-2x2y-4xy2+2x2y2+4xy3-x3+x2y-4xy2+4y3 )2xy
=2xy(2x2y2-8xy2+4xy3+x2y+4y3)
= 4x3y3-16x2y3+8x2y4+2x3y2+8xy4
Trả lời:
[ ( x2 - 2xy + 2xy2 ) ( x + 2y ) - ( x2 + 4y2 ) ( x - y ) ] 2xy
= [ ( x3 + 2x2y - 2x2y - 4xy2 + 2x2y2 + 4xy3 ) - ( x3 - x2y + 4xy2 - 4y3 ) ] 2xy
= ( x3 + 2x2y - 2x2y - 4xy2 + 2x2y2 + 4xy3 - x3 + x2y - 4xy2 + 4y3 ) 2xy
= ( x2y - 8xy2 + 2x2y2 + 4xy3 + 4y3 ) 2xy
= 2x3y2 - 16x2y3 + 4x3y3 + 8x2y4 + 8xy4
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
Học tốt
\(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
a) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
b) \(\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-1-x^4-x^2-1\right)\)
\(=\left(x^2-1\right)\left(-x^4-2\right)\)
\(=-x^6+x^4-2x^2+2\).
\(x^3-4x-12+3x^2=x\left(x^2-2^2\right)+3\left(x^2-2^2\right)=\left(x-2\right)\left(x+2\right)\left(x+3\right)\)
\(x^2+2xy-15y^2=x^2+2xy+y^2-16y^2=\left(x+y\right)^2-\left(4y\right)^2=\left(x-3y\right)\left(x+5y\right)\)
\(\left(x-y\right)^2-6\left(x-y\right)-16=\left(x-y\right)^2-2\times\left(x-y\right)\times3+9-25=\left(x-y-3\right)^2-5^2=\left(x-y-8\right)\left(x-y+2\right)\)
a) \(x^2-xy+x-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-1\right)\)
b) \(2xy-x^2-y^2+16\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
c) \(x^2-6x-16\)
\(=x^2-6x+9-25\)
\(=\left(x^2-6x+9\right)-25\)
\(=\left(x-3\right)^2-5^2\)
\(=\left(x-3-5\right)\left(x-3+5\right)\)
\(=\left(x-8\right)\left(x+2\right)\)
\(x^2+6x-y^2+9\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)
\(\left(x^2+2xy+y^2\right)\left(x^2-2xy+y^2\right)=\left(x-y\right)^2\cdot\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)
Tham khảo nhé bn