K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2018

a)ta có 4+x/7+y=4/7

<=>7x+28=28+4y

<=> 7x=4y

lại có x+y=22

=>4/7y+y=22

<=>11/7y=22 <=> y=14

<=> x= 4/7*14=8

vậy x=8, y=14

12 tháng 3 2018

b) Từ x/3=y/4 va y/5=z/6-->x/15=y/20=z/24 (1)
(1) = 2x/30=3y/60=4z/96=(2x+3y+4z)/186 (2) (t/c dãy tỉ số bằng nhau)
Ta lại có
(1) = 3x/45=4y/80=5z/120=(3x+4y+5z)/245 (3)(t/c dãy tỉ số bằng nhau)
Từ (2)(3) ta có(2x+3y+4z)/186=(3x+4y+5z)/245
Vậy M = (2x+3y+4z)/(3x+4y+5z)=186/245

6 tháng 12 2017

Ta có: \(\widehat{A}=\dfrac{2}{5}\widehat{B}=\dfrac{1}{4}\widehat{C}\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{1}{\dfrac{2}{5}}}}=\widehat{\dfrac{C}{\dfrac{1}{\dfrac{1}{4}}}}\)

\(\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{5}{2}}}=\widehat{\dfrac{C}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\widehat{\dfrac{A}{1}}=\dfrac{\widehat{B}}{\dfrac{5}{2}}=\widehat{\dfrac{C}{4}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\dfrac{5}{2}+4}=\dfrac{180}{9}=20\)

\(\Rightarrow\widehat{A}=20^o\)

\(\widehat{\dfrac{B}{\dfrac{5}{2}}}=20\Rightarrow\widehat{B}=50^o\)

\(\widehat{\dfrac{C}{4}}=20\Rightarrow\widehat{C}=80^o\)

Vậy............................

22 tháng 10 2018

Mình chỉ hướng dẫn giải thôi nhá chứ nhiều bài quá

a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow x=5k;y=7k\)

Thay x.y=315 => 5k.7k=315 <=> 35k2=315 => k2=9 => k=3

x=5.3=15 ; y=7.3=21

b) 5x=9y<=> \(\frac{x}{9}=\frac{y}{5}\)

Theo TCDTSBN ta có : \(\frac{x}{9}=\frac{y}{5}=\frac{2x+3y}{2.9+3.5}=\frac{-33}{33}=-1\)

x/9=-1=>x=-9 ; y/5=-1=>y=-5

các bài còn lại tương tự b 

9 tháng 10 2019

Tìm x,y,z:

a) Ta có : \(\frac{x}{y}=\frac{5}{7}=\frac{x}{5}=\frac{y}{7}\)

Áp dụng tính chất dãy các tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{7}=>\left(\frac{x}{5^{ }}\right)^2\)\(=\left(\frac{y}{7}\right)^2\)=\(\frac{x.y}{5.7}\)\(\frac{35}{35}\)=1

Do đó:

\(\left(\frac{x}{5}\right)^2\)=1 => \(\frac{x}{5}\)=1 hoặc -1 => x = 5 hoặc -5

 \(\left(\frac{y}{7^{ }}\right)^2\)=1=> \(\frac{y}{7}\)=1 hoặc -1 => 7 hoặc -7 

Vì 35 > 0 với mọi x , y 

=> x, y cùng dấu 

Vậy ( x,y) thuộc ( 5;7) và (-5; -7)

/Còn lại tự làm tự xem trình độ/

Bài 3: 

 \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

15 tháng 9 2019

a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)

=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)

b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5

Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý

c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4

Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)

=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)

d, Tương tự áp dụng như bài a,c