K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

Có chứ , tích mak

8 tháng 1 2017

Ak nhầm , cho mk xin lỗi nhé ! Ko lớn hơn 100 bạn ak 

Ta có : 0 x 1 x 2 x3 x3 x .....x99x100

= 0

Vậy k thể lớn hơn 100

Duyệt đi , chúc bạn hk giỏi

18 tháng 7 2023

giúp mình với 

 

a: A={12;15;...;99}

Số số hạng là (99-12):3+1=30(số)

Tổng là (99+12)*30/2=1665

b: B={13;17;...;93;97}

Số số hạng là (97-13):4+1=22(số)

Tổng là (97+13)*22/2=1210

d: D={21;23;...;39}

Tổng là (39+21)*10/2=300

10 tháng 10 2015

 

3 số tự nhiên liên tiếp là n; n+1; n+2 theo đề bài ta có

\(\left(n+1\right).\left(n+2\right)-n^2=29\)

\(\Leftrightarrow n^2+3.n+2-n^2=29\Leftrightarrow n=9\)

3 số đó là 9; 10; 11

28 tháng 8 2016

Cần phải CM: \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{198}-\frac{1}{200}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{200}\)

\(\Rightarrow A=\frac{99}{200}\)

\(\Rightarrow\frac{1}{2}A=\frac{99}{200}\)

\(\Rightarrow A=\frac{99}{400}\)

Có: \(\frac{1}{4}=\frac{100}{400}\)

Lại có: \(\frac{99}{400}< \frac{100}{400}\)

Vậy A < 1/4 (đpcm)

 

28 tháng 8 2016

giỏi 

10 tháng 9 2016

Dự vào thừa số thứ nhất ở mẫu , ta xác định được thừa số thứ nhất ở mẫu của số hạng thứ 100 là :

\(2+2\left(100-1\right)=200\)

Tức là chứng minh :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)

Ta có :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)

    \(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)

Vậy 

 

 

28 tháng 8 2016

Dự vào thừa số thứ nhất ở mẫu, ta xác định thừa số thứ nhất ở mẫu của số hạng thứ 100 là :

\(2+2\left(100-1\right)=200\)

Tức là chứng minh :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)

Ta có :

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)

\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)

Vậy ...