Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A={12;15;...;99}
Số số hạng là (99-12):3+1=30(số)
Tổng là (99+12)*30/2=1665
b: B={13;17;...;93;97}
Số số hạng là (97-13):4+1=22(số)
Tổng là (97+13)*22/2=1210
d: D={21;23;...;39}
Tổng là (39+21)*10/2=300
3 số tự nhiên liên tiếp là n; n+1; n+2 theo đề bài ta có
\(\left(n+1\right).\left(n+2\right)-n^2=29\)
\(\Leftrightarrow n^2+3.n+2-n^2=29\Leftrightarrow n=9\)
3 số đó là 9; 10; 11
Cần phải CM: \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{198.200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{198}-\frac{1}{200}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{200}\)
\(\Rightarrow A=\frac{99}{200}\)
\(\Rightarrow\frac{1}{2}A=\frac{99}{200}\)
\(\Rightarrow A=\frac{99}{400}\)
Có: \(\frac{1}{4}=\frac{100}{400}\)
Lại có: \(\frac{99}{400}< \frac{100}{400}\)
Vậy A < 1/4 (đpcm)
Dự vào thừa số thứ nhất ở mẫu , ta xác định được thừa số thứ nhất ở mẫu của số hạng thứ 100 là :
\(2+2\left(100-1\right)=200\)
Tức là chứng minh :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)
Ta có :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)
\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)
Vậy
Dự vào thừa số thứ nhất ở mẫu, ta xác định thừa số thứ nhất ở mẫu của số hạng thứ 100 là :
\(2+2\left(100-1\right)=200\)
Tức là chứng minh :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}< \frac{1}{4}\)
Ta có :
\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{200.202}\)
\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{101}\right)< \frac{1}{4}.1=\frac{1}{4}\)
Vậy ...
Có chứ , tích mak
Ak nhầm , cho mk xin lỗi nhé ! Ko lớn hơn 100 bạn ak
Ta có : 0 x 1 x 2 x3 x3 x .....x99x100
= 0
Vậy k thể lớn hơn 100
Duyệt đi , chúc bạn hk giỏi