Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-9\right)^2-\left(x+3\right)\left(x-3\right)\left(x^2+9\right)=\left(x-3\right)^2\left(x+3\right)^2-\left(x+3\right)\left(x-3\right)\left(x^2+9\right)\)
\(=\left(x-3\right)\left(x+3\right)\left[\left(x-3\right)\left(x+3\right)-x^2+9\right]=\left(x-3\right)\left(x+3\right)\left[x^2-9-x^2-9\right]=\left(x-3\right)\left(x+3\right)\cdot\left(-18\right)\)
\(=-18\left(x+3\right)\left(x-3\right)\)
a, \(\left(x-2\right)^2+\left(3-x\right)\cdot\left(x-1\right)\)
\(=x^2-4x+4+\left(3x-3-x^2+x\right)\)
\(=x^2-4x+4+3x-3-x^2+x\)
\(=1\)
b, \(\left(x+2\right)^3-x\cdot\left(x^2+6x+12\right)\)
\(=x^3+6x^2+12x+8-x^3-6x^2-12x\)
\(=8\)
Mk làm chi tiết từng bc một nên hơi dài
~ học tốt ~
\(\frac{x^3-4x^2+x+6}{x-2}\)
\(=\frac{x^3-2x^2-2x^2+x+6}{x-2}\)
\(=\frac{\left(x^3-2x^2\right)-\left(2x^2-x-6\right)}{x-2}\)
\(=\frac{x^2\left(x-2\right)-\left(2x^2-4x+3x-6\right)}{x-2}\)
\(=\frac{x^2\left(x-2\right)-[\left(2x^2-4x\right)+\left(3x-6\right)]}{x-2}\)
\(=\frac{x^2\left(x-2\right)-[2x\left(x-2\right)+3\left(x-2\right)]}{x-2}\)
\(=\frac{x^2\left(x-2\right)-\left(x-2\right)\left(2x+3\right)}{x-2}\)
\(=\frac{\left(x-2\right)\left(x^2-2x-3\right)}{x-2}\)
\(=\frac{\left(x-2\right)\left(x^2+x-3x-3\right)}{x-2}\)
\(=\frac{\left(x-2\right)[\left(x^2+x\right)-\left(3x-3\right)]}{x-2}\)
\(=\frac{\left(x-2\right)[x\left(x-1\right)-3\left(x-1\right)}{x-2}\)
\(=\frac{\left(x-2\right)\left(x-1\right)\left(x-3\right)}{x-2}\)
\(=\left(x-1\right)\left(x-3\right)\)
\(\frac{x^3-4x^2+x+6}{x-2}\)
\(=\frac{x^3-2x^2-2x^2+x+6}{x-2}\)
\(=\frac{x^2\left(x-2\right)-\left(x-2\right)\left(2x+3\right)}{x-2}\)
\(=\frac{\left(x-2\right)\left(x^2-2x-3\right)}{x-2}\)
\(=x^2-2x-3\)
@TrầnMinhPhong.
Đến đoạn này là được rồi .
\(\left(x^2+x-3\right)\left(x^2-x+3\right)=x^4-\left(x-3\right)^2=x^4-x^2+6x-9\)