\(\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right).2\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

\(\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}\)

\(=12-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)

\(=12-6\sqrt{3.6}+10\sqrt{3.2^2}-\sqrt{3.4^2}\)

\(=12-6\sqrt{3}.\sqrt{6}+20\sqrt{3}-4\sqrt{3}\)

\(=12\sqrt{6}+\left(-6+20-4\right)\sqrt{3}\)

\(=12\sqrt{6}+10\sqrt{3}\)

mk ko biết mk làm có đúng ko nữa vì mk năm nay mới lên lớp 9 thoy

mk làm đc là do mk tự học

nếu thấy đúng thì k để mk biết nhé 

13 tháng 7 2016

a) Kết quả rút gọn xấu (+dài) nữa. (có thể đề sai)

b) 

\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left[\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right].\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\)

c) \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=\frac{\left(\sqrt{5}-\sqrt{2}\right)^2}{3}\)

14 tháng 7 2016

a) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right].\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{1}{2}-2=-\frac{3}{2}\)

7 tháng 6 2019

Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)

14 tháng 7 2019

\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)

\(=-\frac{3}{2}\)

12 tháng 10 2020

a) \(\left(\frac{\sqrt{9}}{2}+\frac{\sqrt{1}}{2}-\sqrt{2}\right)\sqrt{2}\)

\(=\frac{3\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-2\)

\(=\frac{4\sqrt{2}}{2}-2=2\sqrt{2}-2\)

b) \(\left(\frac{\sqrt{8}}{3}-\sqrt{24}+\frac{\sqrt{50}}{3}\right)\sqrt{6}\)

\(=\frac{4\sqrt{3}}{3}-12+\frac{10\sqrt{3}}{3}\)

\(=\frac{14\sqrt{3}}{3}-12\)

c) \(\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{1}\right)\) (đã sửa đề)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\sqrt{2}\)

\(=\left(3-1\right)\sqrt{2}\)

\(=2\sqrt{2}\)

d) \(\left(3\sqrt{2}+1\right)\left(\sqrt{3\sqrt{2}-1}\right)\)

\(=\sqrt{3\sqrt{2}+1}\cdot\left(\sqrt{3\sqrt{2}+1}\cdot\sqrt{3\sqrt{2}-1}\right)\)

\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{18-1}\)

\(=\sqrt{3\sqrt{2}+1}\cdot\sqrt{17}\)

...

23 tháng 6 2017

\(=\left[\sqrt{2.2.6}-\sqrt{4.4.3}+\sqrt{5.5.2}-\sqrt{\left(\frac{1}{4}\right)^2.8}\right].\sqrt{54}\)

\(=\left[\sqrt{24}-\sqrt{48}+\sqrt{50}-\sqrt{\frac{1}{2}}\right].\sqrt{54}\)

\(=\sqrt{24.54}-\sqrt{48.54}+\sqrt{50.54}-\sqrt{\frac{1}{2}.54}\)

\(=\sqrt{1296}-\sqrt{2592}+\sqrt{2700}-\sqrt{27}\)

\(=36-\sqrt{1296.2}+10\sqrt{27}-\sqrt{27}\)

\(=36-36\sqrt{2}+9\sqrt{27}\)

\(=36-36\sqrt{2}+27\sqrt{3}\)

5 tháng 8 2018

\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

 \(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)

\(=-2+\sqrt{6}-3+2\sqrt{6}\)

\(=-5+3\sqrt{6}\)

5 tháng 8 2018

\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)

\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)

\(=3-\sqrt{7}-2+2\sqrt{7}\)

\(=1+\sqrt{7}\)