Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{1+\sqrt{2}}-2+\sqrt{3}\)
\(=\frac{\sqrt{3}.\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}.\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-2+\sqrt{3}\)
\(=\sqrt{3}+2+\sqrt{2}-2+\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{2}\)
b) \(\frac{-3}{2}.\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2.\left(1+\sqrt{5}\right)^2}\)
\(=\frac{-3}{2}.\sqrt{5-4\sqrt{5}+4}+\sqrt{4^2.\left(1+\sqrt{5}\right)^2}\)
\(=\frac{-3}{2}.\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{4^2}.\sqrt{\left(1+\sqrt{5}\right)^2}\)
\(=\frac{-3}{2}.\left|\sqrt{5}-2\right|+4.\left|1+\sqrt{5}\right|\)
\(=\frac{-3}{2}.\left(\sqrt{5}-2\right)+4\left(1+\sqrt{5}\right)\)
\(=\frac{-3\sqrt{5}}{2}+3+4+4\sqrt{5}\)
\(=\frac{-3\sqrt{5}}{2}+4\sqrt{5}+7\)
\(=\frac{-3\sqrt{5}}{2}+\frac{8\sqrt{5}}{2}+\frac{14}{2}\)
\(=\frac{-3\sqrt{5}+8\sqrt{5}+14}{2}=\frac{14+5\sqrt{5}}{2}\)
a/\(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=\frac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}=2\sqrt{5}+\frac{8}{1-\sqrt{5}}\)
\(=\frac{2\sqrt{5}-10+8}{1-\sqrt{5}}=\frac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}=-2\)
b/Đề sai
c/\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{\sqrt{2}}{3+\sqrt{3}}+\frac{\sqrt{2}}{3-\sqrt{3}}=\sqrt{2}\left(\frac{3+\sqrt{3}+3-\sqrt{3}}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\right)=\frac{6\sqrt{2}}{6}=\sqrt{2}\)
d/ \(\frac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9+4\sqrt{5}-8\sqrt{5}}{2\sqrt{5}-4}=\frac{9-4\sqrt{5}}{2\left(\sqrt{5}-2\right)}=\frac{\left(\sqrt{5}-2\right)^2}{2\left(\sqrt{5}-2\right)}=\frac{\sqrt{5}-2}{2}\)
\(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-\sqrt{1}=4\)
\(\Leftrightarrow\sqrt{25}-\sqrt{1}=4\Leftrightarrow5-1=4\)(đúng)
Vậy \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}=4\)(đpcm)
\(M=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{2-6\sqrt{2}+9}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)
\(=\left(2\sqrt{2}\right)\sqrt{2+4\sqrt{6}}\)
\(=\sqrt{16+32\sqrt{6}}\)
a, \(\frac{\sqrt{3-\sqrt{5}}\times''3+\sqrt{5}''}{\sqrt{10}+\sqrt{2}}\)
\(=\frac{-9.976153125}{4.576491223}\)
b,\(\frac{''\sqrt{5}+2''^2-8\sqrt{5}}{2\sqrt{5}-4}\)
\(=\frac{0.05572809}{0.472135955}\)
P/s; Em không chắc đâu ạ. Mới lớp 5 lên 6 thôi
a: \(=\dfrac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-\sqrt{6}}{3}-\dfrac{1}{\sqrt{6}}=\dfrac{-\sqrt{6}}{2}\)
b: \(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{2\sqrt{5}+2}=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\sqrt{5}+2}\)
\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
d: \(=-\left(\sqrt{5}+\sqrt{2}\right)\cdot\left(\sqrt{5}-\sqrt{2}\right)=-3\)
a) \(\frac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\frac{8}{1-\sqrt{5}}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(1-\sqrt{5}\right)}+\frac{8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{\left(10+2\sqrt{10}\right)\left(1-\sqrt{5}\right)+8\left(\sqrt{5}+\sqrt{2}\right)}{\left(1-\sqrt{5}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
= \(\frac{10-2\sqrt{5}+2\sqrt{10}-2\sqrt{2}}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= \(\frac{2\left(5-\sqrt{5}+\sqrt{10}-\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}-5-\sqrt{10}}\)
= -2
b); c); d) làm tương tự
a/ Bạn ghi nhầm đề rồi
c/ \(2\sqrt{18\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{18}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{\sqrt{48}}\)
\(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-3\sqrt{5}.\sqrt{4\sqrt{3}}\)
\(=2.3\sqrt{2}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-6\sqrt{5}.\sqrt{\sqrt{3}}\)
\(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-\sqrt{5}-3\sqrt{5}\right)\)
\(=2\sqrt{\sqrt{3}}\left(3\sqrt{2}-4\sqrt{5}\right)\)\(=2\sqrt{2\sqrt{3}}\left(3-2\sqrt{10}\right)\)
f/ \(\sqrt{2}.\sqrt{2+\sqrt{3}}-2\left(\sqrt{3}-1\right)=\sqrt{4+2\sqrt{3}}-2\left(\sqrt{3}-1\right)\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-2\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-2\sqrt{3}+2=3-\sqrt{3}=\sqrt{3}\left(\sqrt{3}-1\right)\)
g/ \(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}-2\sqrt{3}+2007\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-2\sqrt{3}+2007\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}-2\sqrt{3}+2007\)
\(=2007\)