Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+6}{x^2+4}-\frac{2}{x^2+2x}\)
\(=\frac{x+6}{\left(x+2\right)^2}-\frac{2}{x\left(x+2\right)}\)
\(=\frac{x\left(x+6\right)}{x\left(x+2\right)^2}-\frac{2\left(x+2\right)}{x\left(x+2\right)^2}\)
\(=\frac{x^2+6x-2x-4}{x\left(x+2\right)^2}\)
\(=\frac{x^2+4x-4}{x\left(x+2\right)^2}\)
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
\(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)( ĐKXĐ : \(x\ne\pm2\))
\(=\frac{5\left(x+2\right)}{2\left(2x-4\right)}\cdot\frac{-\left(2x-4\right)}{x+2}\)
\(=\frac{-5\left(x+2\right)\left(2x-4\right)}{2\left(2x-4\right)\left(x+2\right)}\)
\(=-\frac{5}{2}\)
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}\)( ĐKXĐ : \(x\ne-5;x\ne6\))
\(=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\frac{3}{-\left(x-6\right)}\)
\(=\frac{3\left(x-6\right)\left(x+6\right)}{-2\left(x+5\right)\left(x-6\right)}\)
\(=\frac{3\left(x+6\right)}{-2\left(x+5\right)}=\frac{3x+18}{-2x-10}=-\frac{3x+18}{2x+10}\)
a)
Điều kiện : \(\hept{\begin{cases}4x-8\ne0\\x+2\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
\(=\frac{5\left(x+2\right)}{-2\left(4-2x\right)}\cdot\frac{4-2x}{x+2}\)
\(=\frac{-5}{2}\)
b)
Điều kiện : \(\hept{\begin{cases}2x+10\ne0\\6-x\ne0\end{cases}}\)
\(\hept{\begin{cases}x\ne-5\\x\ne6\end{cases}}\)
\(=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}\)
\(=\frac{-6\left(x+6\right)\cdot3}{2x+10}\)
\(=\frac{-9\left(x+6\right)}{x+5}\)
\(=\frac{-9x-54}{x+5}\)
\(=\frac{-9\left(x+5\right)-9}{x+5}\)
\(=-9-\frac{9}{x+5}\)
a. \(=\frac{x+1}{2.\left(x+3\right)}+\frac{2x+3}{x.\left(x+3\right)}=\frac{x^2+x+4x+6}{2x.\left(x+3\right)}=\frac{x^2+5x+6}{2x.\left(x+3\right)}=\frac{\left(x+2\right).\left(x+3\right)}{2x.\left(x+3\right)}=\frac{x+2}{2x}\)
b. =\(\frac{2.\left(x+3\right)}{x.\left(3x-1\right)}.\frac{-\left(3x-1\right)}{x.\left(x+3\right)}=\frac{-2}{x^2}\)
Chắc chắn đúng, mik nhaaaaaa
\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)
Đang đánh máy thì bấm gửi -..-
mk ko biết làm
xin lỗi bn nhae
xin lỗi vì đã ko giúp được bn
chcus bn học gioi!
nhae@@@
a) \(\frac{3x}{2x+4}+\frac{x+3}{x^2-4}\)
\(=\frac{3x}{2\left(x+2\right)}+\frac{x+3}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}+\frac{2\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x\left(x-2\right)+2\left(x+3\right)}{2\left(x+2\right)\left(x-2\right)}\)
\(=\frac{3x^2-6x+2x+6}{2\left(x^2-4\right)}\)
\(=\frac{3x^2-4x+6}{2\left(x^2-4\right)}\)
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)
\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)
\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)
\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)
chỗ cuối tớ sai
\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)
đây nha , e xin lỗi
Bài làm:
Ta có: \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)
\(=\frac{4-x^2}{x-3}+\frac{2x^2-2x}{x-3}+\frac{5-4x}{x-3}\)
\(=\frac{x^2-6x+9}{x-3}\)
\(=\frac{\left(x-3\right)^2}{\left(x-3\right)}=x-3\) \(\left(x\ne3\right)\)
\(\frac{x+6}{x^2-4}-\frac{2}{x^2+2x}\)
\(=\frac{x+6}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x\left(x+2\right)}\)
\(=\frac{x\left(x+6\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+6x-2x+4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+4x+4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{x\left(x-2\right)}\)