\(\frac{4-x^2}{x-3}\)\(+\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

Bài làm:

Ta có: \(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}\)

\(=\frac{4-x^2}{x-3}+\frac{2x^2-2x}{x-3}+\frac{5-4x}{x-3}\)

\(=\frac{x^2-6x+9}{x-3}\)

\(=\frac{\left(x-3\right)^2}{\left(x-3\right)}=x-3\) \(\left(x\ne3\right)\)

23 tháng 8 2020

\(\frac{4-x^2}{x-3}+\frac{2x-2x^2}{3-x}+\frac{5-4x}{x-3}.\)

\(=\frac{4-x^2}{x-3}-\frac{2x-2x^2}{x-3}+\frac{5-4x}{x-3}.\)

\(=\frac{4-x^2-2x+2x^2+5-4x}{x-3}\)

\(=\frac{x^2-6x+9}{x-3}\)

\(=\frac{\left(x-3\right)^2}{x-3}=x-3\)

31 tháng 8 2020

\(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)( ĐKXĐ : \(x\ne\pm2\))

\(=\frac{5\left(x+2\right)}{2\left(2x-4\right)}\cdot\frac{-\left(2x-4\right)}{x+2}\)

\(=\frac{-5\left(x+2\right)\left(2x-4\right)}{2\left(2x-4\right)\left(x+2\right)}\)

\(=-\frac{5}{2}\)

\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}\)( ĐKXĐ : \(x\ne-5;x\ne6\))

\(=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\frac{3}{-\left(x-6\right)}\)

\(=\frac{3\left(x-6\right)\left(x+6\right)}{-2\left(x+5\right)\left(x-6\right)}\)

\(=\frac{3\left(x+6\right)}{-2\left(x+5\right)}=\frac{3x+18}{-2x-10}=-\frac{3x+18}{2x+10}\)

31 tháng 8 2020

a) 

Điều kiện : \(\hept{\begin{cases}4x-8\ne0\\x+2\ne0\end{cases}}\)    

\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)    

\(=\frac{5\left(x+2\right)}{-2\left(4-2x\right)}\cdot\frac{4-2x}{x+2}\)    

\(=\frac{-5}{2}\)    

b) 

Điều kiện : \(\hept{\begin{cases}2x+10\ne0\\6-x\ne0\end{cases}}\)    

\(\hept{\begin{cases}x\ne-5\\x\ne6\end{cases}}\)     

\(=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}\)   

\(=\frac{-6\left(x+6\right)\cdot3}{2x+10}\)   

\(=\frac{-9\left(x+6\right)}{x+5}\)  

\(=\frac{-9x-54}{x+5}\)  

\(=\frac{-9\left(x+5\right)-9}{x+5}\) 

\(=-9-\frac{9}{x+5}\)

3 tháng 9 2020

\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))

\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)

\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)

3 tháng 9 2020

\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)

Đang đánh máy thì bấm gửi -..-

15 tháng 3 2020

1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)

=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)

15 tháng 3 2020

2, \(\frac{1}{1-x}-\frac{2x}{1-x^2}\)=\(\frac{1+x}{\left(1-x\right)\left(1+x\right)}+\frac{2x}{\left(1-x\right)\left(1+x\right)}\)=\(\frac{1+x+2x}{\left(1-x\right)\left(1+x\right)}=\frac{3x+1}{\left(1-x\right)\left(1+x\right)}\)

3 tháng 9 2020

a, \(\frac{x+2y}{8x^2y^5}-\frac{3x^2+2}{12x^4y^4}\)

=\(\frac{\left(x+2y\right)3x^2}{24x^4y^5}-\frac{\left(3x^2+2\right)2y}{24x^4y^5}\)

=\(\frac{3x^3+6x^2y}{24x^4y^5}-\frac{6x^2y+4y}{24x^4y^5}\)

=\(\frac{3x^3+6x^2y-6x^2y-4y}{24x^4y^5}\)

=\(\frac{3x^3-4y}{24x^4y^5}\)

b,\(\frac{y}{xy-5x^2}-\frac{15y-25x}{y^2-25x^2}\)

=\(\frac{y}{x\left(y-5x\right)}-\frac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\frac{\left(15y-25x\right)x}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y^2+5xy}{x\left(y-5x\right)\left(y+5x\right)}-\frac{15xy-25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)

=\(\frac{y-5x}{x\left(y+5x\right)}\)

c,\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)

=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x^3-x^2\right)+\left(2x-2\right)}\)

=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)

=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{\left(x+5\right)x}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{4x-4-x^2+x}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)

=\(\frac{-2}{x\left(x-1\right)}\)

Bài làm

a) \(\frac{4x-5}{8xy}+\frac{5-y}{8xy}=\frac{4x-5+5-y}{8xy}=\frac{4x-y}{8xy}\)

b) \(\frac{4x^2}{x-2}+\frac{3}{x-2}+\frac{19}{2-x}=\frac{4x^2}{x-2}+\frac{3}{x-2}-\frac{19}{x-2}=\frac{4x^2+3-19}{x-2}=\frac{4x^2-16}{x-2}=\frac{2\left(x-2\right)\left(2x+4\right)}{x-2}=2\left(2x+4\right)\)

c) \(\frac{2x^3+5}{x^2-x+1}-\frac{x^3+4}{x^2-x+1}=\frac{2x^3+5-x^3-4}{x^2-x+1}=\frac{2x^2-x^3+1}{x^2-x+1}\)

d) \(\frac{6}{5x-20}-\frac{x-5}{x^2-8x+16}=\frac{6}{5\left(x-4\right)}-\frac{x-5}{\left(x-4\right)^2}=\frac{6\left(x-4\right)}{5\left(x-4\right)^2}-\frac{\left(x-5\right)5}{5\left(x-4\right)^2}=\frac{6x-4-5x+25}{5\left(x-4\right)^2}=\frac{x+21}{5\left(x-4\right)^2}\)

# Học tốt #

15 tháng 3 2020

\(1,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2x+6}-\frac{x-6}{x\left(2x-6\right)}=\frac{3x-x+6}{x\left(2x-6\right)}=\frac{2x+6}{x\left(2x-6\right)}\)

\(2,\frac{1}{1-x}+\frac{2x}{x^2-1}=\frac{-1\left(x+1\right)+2x}{x^2-1}=\frac{x-1}{x^2-1}=\frac{1}{x+1}\)

\(3,\frac{1}{xy-x^2}-\frac{1}{y^2-xy}=\frac{1}{x\left(y-x\right)}-\frac{1}{y\left(y-x\right)}=\frac{y-x}{xy\left(y-x\right)}=\frac{1}{xy}\)

\(4,\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}=\frac{-5}{2}\)

\(5,\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2x\left(x+4\right)}\)

\(6,\frac{12x}{5y^3}.\frac{15y^4}{8x^3}=\frac{9y}{2x^2}\)

15 tháng 3 2020

cảm ơn nha

29 tháng 11 2019

giúp mk với

29 tháng 11 2019

a) \(\frac{x-1}{2x}+\frac{2x+1}{2x}+\frac{1-5x}{6x}\)

\(=\frac{3x-3}{6x}+\frac{6x+3}{6x}+\frac{1-5x}{6x}\)

\(=\frac{3x-3+6x+3+1-5x}{6x}\)

\(=\frac{4x+1}{6x}\)

a) Ta có: \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)

\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\)

\(=\frac{x\left(x+1\right)}{2x\left(x+3\right)}+\frac{2\cdot\left(2x+3\right)}{2x\left(x+3\right)}\)

\(=\frac{x^2+x+4x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+5x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}\)

\(=\frac{x\left(x+2\right)+3\left(x+2\right)}{2x\left(x+3\right)}\)

\(=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)

b) Ta có: \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)

\(=\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)

\(=\frac{3x}{x\left(2x+6\right)}-\frac{x-6}{x\left(2x+6\right)}\)

\(=\frac{3x-x+6}{x\left(2x+6\right)}=\frac{2x+6}{x\left(2x+6\right)}=\frac{1}{x}\)

c) Ta có: \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)

\(=\frac{5\left(x+2\right)\cdot2\cdot\left(2-x\right)}{4\cdot\left(x-2\right)\cdot\left(x+2\right)}\)

\(=\frac{5\cdot2\cdot\left(2-x\right)}{-4\left(2-x\right)}=\frac{5\cdot2}{-4}=\frac{-5}{2}\)

d) Ta có: \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)

\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3x}{x\left(x+4\right)\cdot2\left(2-x\right)}\)

\(=\frac{\left(1-2x\right)\left(1+2x\right)\cdot3}{2\left(x+4\right)\cdot\left(2-x\right)}=\frac{3\left(1-4x^2\right)}{2\left(-x^2-2x+8\right)}\)

\(=\frac{3-12x^2}{-2x^2-4x+16}\)

27 tháng 3 2020

a) \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}\)

\(=\frac{x+1}{2\left(x+3\right)}+\frac{2x+3}{x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne-3;x\ne0\right)\)

\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{4x+6}{2x\left(x+3\right)}\)

\(=\frac{x^2+2x+3x+6}{2x\left(x+3\right)}=\frac{\left(x+2\right)\left(x+3\right)}{2x\left(x+3\right)}=\frac{x+2}{2x}\)

b) \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\) \(\left(ĐKXĐ:x\ne0;x\ne-3\right)\)

\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)

c) \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}=\frac{5\left(x+2\right)}{4\left(x-2\right)}.\frac{2\left(2-x\right)}{x+2}\) \(\left(ĐKXĐ:x\ne\pm2\right)\)

\(=\frac{-5\left(x-2\right)}{2\left(x-2\right)}=\frac{-5}{2}\)