Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\frac{5x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(1-2x\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\) = \(\frac{5x+1-1+3x-2x^2+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\) =\(\frac{10x+2}{x^3-1}\)
b.\(\frac{5}{x+1}+\frac{10}{x^2-x+1}-\frac{15}{x^3+1}\)( đến đây dễ r đúng ko)
a: \(=\dfrac{x^3-1}{x+2}\cdot\dfrac{x^2+x+1-x^2+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\left(\dfrac{x+1-2x+2}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x+2}\right)\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\left(\dfrac{-\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x+2}\right)\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)\left(x+1\right)}{2\left(x+5\right)}\cdot\dfrac{-\left(x^2-x-6\right)+x^2-1}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{-x^2+x+6+x^2-1}{2\left(x+5\right)}=\dfrac{x+5}{2\left(x+5\right)}=\dfrac{1}{2}\)
a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)
( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)
(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)
1/x +1/x+4
2x+4/x(x+4)
\(A=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(A=\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1+x\right)\left(1-x\right)}\right)+...+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
Tiếp tục các bước như ở dòng 2 và 3 ta có :
\(A=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1+x^{16}\right)\left(1-x^{16}\right)}\)
\(A=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}\)
\(A=\dfrac{32}{1-x^{32}}\)
\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)
\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{1}{2\left(x-3\right)}\)
\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)
\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)
\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)
\(=\frac{12}{x}\)
a) (2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x(2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x
=4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x
=8x.5(2x+1)(2x−1)(2
b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)=\left(\dfrac{1}{x\left(x+1\right)}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right):\left(\dfrac{1}{x}+\dfrac{x^2}{x}-\dfrac{2x}{x}\right)=\left(\dfrac{1-2x+x^2}{x\left(x+1\right)}\right):\left(\dfrac{1+x^2-2x}{x}\right)=\left(\dfrac{\left(x-1\right)^2}{x\left(x+1\right)}\right)\cdot\left(\dfrac{x}{\left(x-1\right)^2}\right)=\dfrac{\left(x-1\right)^2\cdot x}{\left(x-1\right)^2\cdot x\cdot\left(x+1\right)}=\dfrac{1}{x+1}\)
\(\dfrac{x+1}{x^2-4}:\dfrac{x+1}{x+2}=\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+1}{x+2}=\dfrac{x+1}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{x+1}=x-2\)
làm giúp mình câu 22 với