\(\dfrac{2}{\sqrt{3}-1}+\dfrac{2}{\sqrt{3}+1}+\dfrac{3-\sqrt{3}}{1-\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

\(=\dfrac{2\sqrt{3}+2+2\sqrt{3}-2}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\dfrac{4\sqrt{3}}{2}-\sqrt{3}=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)

1: \(=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)

2: \(=\dfrac{4+2\sqrt{3}+4-2\sqrt{3}}{2}=\dfrac{8}{2}=4\)

4: \(=\dfrac{-3+5\sqrt{3}}{11}+\dfrac{3+5\sqrt{3}}{11}=\dfrac{10\sqrt{3}}{11}\)

a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)

\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)

b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)

25 tháng 12 2017

Rút gọn biểu thức chứa căn bậc hai

2 tháng 7 2018

\(1.A=\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right).\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\left(\dfrac{3+\sqrt{5}}{9-5}-\dfrac{3-\sqrt{5}}{9-5}\right).\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}=\dfrac{2\sqrt{5}}{4}.\sqrt{5}=\dfrac{5}{2}\) \(2.B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}=\sqrt{100}-1\)

\(3.C=\sqrt[3]{7+5\sqrt{2}}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(\sqrt{2}\right)^3+3.2.1+3.\sqrt{2}.1+1}-\sqrt[3]{\left(\sqrt{2}\right)^3-3.2.1+3.\sqrt{2}.1-1}=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\) \(4.Sai-đề\) ???

2 tháng 7 2018

Sorry và cám ơn bạn.

4.\(\sqrt[3]{9+4\sqrt{5}}\) + \(\sqrt[3]{9-4\sqrt{5}}\)

a: \(=\dfrac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\sqrt{7}-4+4+2\sqrt{7}-\dfrac{20}{9}+\dfrac{5}{9}\sqrt{7}\)

\(=\dfrac{32}{9}\sqrt{7}-\dfrac{20}{9}\)

b: \(=\dfrac{2\sqrt{6}+4+2\sqrt{6}-4}{2}+\dfrac{5\sqrt{6}}{6}\)

\(=2\sqrt{6}+\dfrac{5}{6}\sqrt{6}=\dfrac{17}{6}\sqrt{6}\)

a: \(=\left(5+2\sqrt{6}\right)\left(5-2\sqrt{6}\right)^2\cdot\left(\sqrt{3}-\sqrt{2}\right)\)

\(=\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)\)

\(=5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}=9\sqrt{3}-11\sqrt{2}\)

b: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)

\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)

\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{9-3}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)

d: \(=2\sqrt{2}-\sqrt{6}-3\sqrt{2}+\sqrt{6}=-\sqrt{2}\)

1: \(=\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{\dfrac{10}{3}}\right)\cdot\left(\sqrt{\dfrac{6}{5}}+\sqrt{2}-\dfrac{4}{\sqrt{5}}\right)\)

\(=\left(\dfrac{4\sqrt{3}}{3}+\dfrac{3\sqrt{2}}{3}+\dfrac{\sqrt{30}}{3}\right)\cdot\left(\dfrac{\sqrt{30}}{5}+\dfrac{5\sqrt{2}}{5}-\dfrac{4\sqrt{5}}{5}\right)\)

\(=\dfrac{\left(4\sqrt{3}+3\sqrt{2}+\sqrt{30}\right)\left(\sqrt{30}+5\sqrt{2}-4\sqrt{5}\right)}{15}\)

2: \(=\left(2\sqrt{3}+6\sqrt{3}\right)\cdot\dfrac{\sqrt{3}}{2}-5\sqrt{6}\)

\(=\dfrac{8\sqrt{9}}{2}-5\sqrt{6}=4\sqrt{9}-5\sqrt{6}=12-5\sqrt{6}\)

12 tháng 7 2018

\(a.\dfrac{\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=\dfrac{\left(2+\sqrt{3}\right)\sqrt{3-2\sqrt{3}+1}}{\sqrt{3+2\sqrt{3}+1}}=\dfrac{\left(2+\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\sqrt{3}+1}=\dfrac{2\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{3-1}=4-3=1\)

\(b.\dfrac{\left(\sqrt{5}-1\right)^3}{\sqrt{5}-2}=\dfrac{5\sqrt{5}-15+3\sqrt{5}-1}{\sqrt{5}-2}=\dfrac{8\sqrt{5}-16}{\sqrt{5}-2}=\dfrac{8\left(\sqrt{5}-2\right)}{\sqrt{5}-2}=8\)

\(c.\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=\left(\sqrt{2}+1-\sqrt{2}+1\right)\left[\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)+\left(\sqrt{2}-1\right)^2\right]=2\left(3+1+3\right)=2.7=14\)

\(d.\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5+2\sqrt{5}+1}}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=\dfrac{2}{2}=1\)

14 tháng 7 2017

Bài 2:

\(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2.\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(P=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(P=\left[\dfrac{\left(a-1\right)^2}{4a}\right].\left(\dfrac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\sqrt{a}-1}{a-1}\right)\)

\(P=\dfrac{\left(a-1\right)^2}{4a}.\dfrac{2\sqrt{a}.\left(-2\right)}{a-1}\)

\(P=\dfrac{\left(a-1\right)^2\left(-4\sqrt{a}\right)}{4a.\left(a-1\right)}\)

\(P=\dfrac{\left(a-1\right).\left(-\sqrt{a}\right)}{a}=\dfrac{-a\sqrt{a}+\sqrt{a}}{a}\)

14 tháng 7 2017

Bài 1:

\(A=\dfrac{2}{\sqrt{2}}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{3}-1}\)\(A=\dfrac{2\sqrt{2}}{2}-\dfrac{1\left(\sqrt{3}+\sqrt{2}\right)}{3-2}+\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^2-1}\)

\(A=\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{1}+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)

\(A=\sqrt{2}-\sqrt{3}-\sqrt{2}+\sqrt{3}+1\)

\(A=1\)

14 tháng 8 2018

\(A=\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)

\(B=\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}\right)=\sqrt{5}\left(5-3\right)=2\sqrt{5}\)

\(C=\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)=\sqrt{9}\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=\sqrt{9}\left(7-5\right)=2\sqrt{9}\)

\(D=\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\)

\(E=\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{5^2-\sqrt{5}^2}=\dfrac{60}{20}=3\)