Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=\left(-\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=-1\)
b.\(\sqrt{16+2\sqrt{16.5}+5}+\sqrt{16-2\sqrt{16.5}+5}=\sqrt{\left(4+\sqrt{5}\right)^2}+\sqrt{\left(4-\sqrt{5}\right)^2}=8\)
d,dat \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\Rightarrow A^2=4+\sqrt{7}+2\sqrt{16-7}+4-\sqrt{7}\)\(A^2=8+6=14\Rightarrow A=\sqrt{14}\)
C,\(\sqrt{17-4\sqrt{\left(2+\sqrt{5}\right)^2}}=\sqrt{17-4\left(2+\sqrt{5}\right)}=\sqrt{17-8-4\sqrt{5}}=\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)
a,\(\sqrt{\left(\sqrt{3}-1\right)^2}\) \(+\sqrt{\left(\sqrt{3}+1\right)^2}=2\sqrt{3}\)
b. \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=3\sqrt{5}\)
c,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=4\)
d.\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2\sqrt{2}\)
a)\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)
b) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}=4\sqrt{3}\)
c)\(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}=2\sqrt{3}+10\sqrt{3}-12\sqrt{3}-2\sqrt{3}=-2\sqrt{3}\)
d) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
\(=\left|3+\sqrt{5}\right|-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left|\sqrt{5}-2\right|=3+\sqrt{5}-\sqrt{5}+2=5\)
e) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
\(=\left[\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}=-3\)
Nản k lm nữa ^^
a,\(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{2^2+2\cdot2\cdot\left(2\sqrt{5}\right)+\left(2\sqrt{5}\right)^2}\) \(+\sqrt{\left(\sqrt{5}\right)^2-2\cdot2\sqrt{5}+2^2}=\sqrt{\left(2+2\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\)=\(2+2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}\)
b,\(\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}=3-2\sqrt{2}+2\sqrt{2}+1=4\)
c,\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}-2\right)^2}=2-\sqrt{2}+3\sqrt{2}-2=2\sqrt{2}\)
\(a,\sqrt{\frac{72}{9}}:\sqrt{8}=\frac{\sqrt{72}}{\sqrt{9}}.\frac{1}{\sqrt{8}}\)
\(=\frac{6\sqrt{2}}{3}.\frac{1}{2\sqrt{2}}\)
\(=1\)
\(b,\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}\)
\(=33\sqrt{3}:\sqrt{3}\)
\(=33\)
\(c,\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}=\left(5\sqrt{5}+7\sqrt{5}-\sqrt{5}\right):\sqrt{5}\)
\(=11\sqrt{5}:\sqrt{5}\)
\(=11\)
\(d,\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}=\left(\frac{1}{\sqrt{7}}-\frac{4}{\sqrt{7}}+\frac{7}{\sqrt{7}}\right):\sqrt{7}\)
\(=\frac{4}{\sqrt{7}}.\frac{1}{\sqrt{7}}=\frac{4}{7}\)
Câu 8:
a)
Ta có: \(VT=\sqrt{4-2\sqrt{3}}-\sqrt{3}\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)
\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)(1)
Ta có: 3>1
\(\Leftrightarrow\sqrt{3}>\sqrt{1}\)
\(\Leftrightarrow\sqrt{3}>1\)
\(\Leftrightarrow\sqrt{3}-1>0\)
\(\Leftrightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)(2)
Từ (1) và (2) suy ra \(VT=\sqrt{3}-1-\sqrt{3}=-1=VP\)(đpcm)
b) Ta có: \(VP=\left(\sqrt{5}+2\right)^2\)
\(=\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot2+2^2\)
\(=5+4\sqrt{5}+4\)
\(=9+4\sqrt{5}=VT\)(đpcm)
c) Ta có: \(VT=\sqrt{9+4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{4+2\cdot2\cdot\sqrt{5}+5}-\sqrt{5}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{5}\)
\(=\left|2+\sqrt{5}\right|-\sqrt{5}\)
\(=2+\sqrt{5}-\sqrt{5}=2=VP\)(đpcm)
d) Ta có: \(VT=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(=\sqrt{16+2\cdot4\cdot\sqrt{7}+7}-\sqrt{7}\)
\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(=\left|4+\sqrt{7}\right|-\sqrt{7}\)
\(=4+\sqrt{7}-\sqrt{7}\)
\(=4=VP\)(đpcm)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
a)
\(M=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{4+4\sqrt{5}+5}-\sqrt{4-4\sqrt{5}+5}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)
\(=2+\sqrt{5}-\left(\sqrt{5}-2\right)\) (vì \(2+2\sqrt{5}>0;2-\sqrt{5}< 0\) )
\(=2+\sqrt{5}-\sqrt{5}+2\\ =4\)
b)
\(N=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left|\sqrt{7}-1\right|-\left|\sqrt{7}+1\right|\)
\(=\sqrt{7}-1-\left(\sqrt{7}+1\right)\) (vì \(\sqrt{7}-1>0;\sqrt{7}+1>0\) )
\(=\sqrt{7}-1-\sqrt{7}-1\\ =-2\)