Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Tìm các số nguyên x,y thỏa mãn
*\(2xy+6x-y=10\)
\(\Leftrightarrow\left(2xy+6x\right)-y-3=10-3=7\)
\(\Leftrightarrow2x\left(y+3\right)-\left(y+3\right)=7\)
\(\Leftrightarrow\left(y+3\right)\left(2x-1\right)=7\)
Lập bảng xét ước nữa là xong.
* \(xy+4x-3y=1\Leftrightarrow\left(xy+4x\right)-3y-12=1-12=-11\)
\(\Leftrightarrow x\left(y+4\right)-\left(3y+12\right)=-11\)
\(\Leftrightarrow x\left(y+4\right)-3\left(y+4\right)=-11\)
\(\Leftrightarrow\left(x-3\right)\left(y+4\right)=-11\)
Lập bảng xét ước nữa là xong.
Mới nhìn vào thấy bài toán hay hay lạ kì.
Thêm một vào bớt một ra
Tức thì bài toán trở nên dễ dàng:
\(\frac{x}{50}-\frac{x-1}{51}=\frac{x+2}{48}-\frac{x-3}{53}\)
\(\Leftrightarrow\frac{x}{50}+1-\frac{x-1}{51}-1=\frac{x+2}{48}+1-\frac{x-3}{53}-1\)
\(\Leftrightarrow\left(\frac{x}{50}+1\right)-\left(\frac{x-1}{51}+1\right)=\left(\frac{x+2}{48}+1\right)-\left(\frac{x-3}{53}+1\right)\)
\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}=\frac{x+50}{48}-\frac{x+50}{53}\)
\(\Leftrightarrow\frac{x+50}{50}-\frac{x+50}{51}-\frac{x+50}{48}+\frac{x+50}{53}=0\)
\(\Leftrightarrow\left(x+50\right)\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)=0\)
Dễ thấy \(\left(\frac{1}{50}-\frac{1}{51}-\frac{1}{48}+\frac{1}{53}\right)\ne0\)
Do đó x + 50 = 0 hay x = -50
a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)
\(=-2x^4y^3+4x^3y^4-10x^2y^5\)
b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)
\(=-2x^4+6x^3+2x^2-2x\)
c) Ta có: \(3x^2\left(2x^3-x+5\right)\)
\(=6x^5-3x^3+15x^2\)
d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)
\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)
e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)
\(=-4x^3y^2+8x^2y^2-12x^2y\)
f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)
\(=4x^3y^2+3x^2y^2-5x^3y\)
a: =5x^3-5x^2y+5x-2x^2y+2xy^2-2y
=5x^3-7x^2y+2xy^2+5x-2y
b: =(x^2-1)(x+2)
=x^3+2x^2-x-2
c: =1/2x^2y^2(4x^2-y^2)
=2x^4y^2-1/2x^2y^4
d: =(x^2-1/4)(4x-1)
=4x^3-x^2-x+1/4
e: =x^2-2x-35+(2x+1)(x-3)
=x^2-2x-35+2x^2-6x+x-3
=3x^2-7x-38
Cho đa thức \(A=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\). Thu gọn A và tìm bậc của A.
Bài làm
\(A=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
\(A=-xy^2-4x^2y\)
Bậc của đa thức là: 3
\(B=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
a) \(B=\left(-2+1\right)xy^2+\left(\frac{1}{3}-\frac{1}{3}\right)x^3y+\left(x-x\right)-4x^2y\)
\(B=-xy^2+x^3y+\left(-4\right)x^2y\)
\(B=-xy^2+x^3y-4x^2y\)
b) -xy2 có bậc là 3
x3y có bậc là 4
-4x2y có bậc là 3
=> Bậc của B = 4
c) x = 1 ; y = 2
Thay x = 1 ; y = 2 vào B ta có :
\(B=-xy^2+x^3y-4x^2y\)
\(B=-\left(1\cdot2^2\right)+1^3\cdot2-4\cdot1^2\cdot2\)
\(B=-4+2-8\)
\(B=-10\)
Vậy giá trị của B = -10 khi x = 1 ; y = 2
a, \(B=-2xy^2+\frac{1}{3}x^3y-x-\frac{1}{3}x^3y+xy^2+x-4x^2y\)
\(=-2xy^2+\frac{x^3y}{3}-x-\frac{x^3y}{3}+xy^2+x-4x^2y\)
\(=-xy^2-4x^2y\)
b,
Bậc của -xy2 = 3
Bậc của x3y = 4
Bậc của -4x2y = 3
Bậc của B = 4
c, Thay x = 1 ; y = 2 vào đon thức trên ta đc
\(-\left(1.2^2\right)-4.1^2.2=-4-4.1.2=-4-8=-12\)
a) \(3xy^3\left(-2x^2yz^3\right)=-6x^3y^4z^3\)
b) \(xy\left(-8xy^4\right)=-8x^2y^5\)
c) \(x^3y\left(-5y^2z\right)=-5x^3y^3z\)
d) \(-x\left(-3x^3y\right)=3x^4y\)