Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a)\(9^2\div\left(27^3.81^2\right)=9^2\div\left[\left(3^3\right)^3.\left(9^2\right)^2\right]=9^2\div\left(3^9.9^4\right)\)
Tự lm típ
a,\(9^2:\left(27^3.81^2\right)=3^4:\left(3^9.3^8\right)=3^4:\left(3^{9+8}\right)=3^4:3^{17}=3^{-13}\)
C2 :
\(2\cdot3^{x+2}+4\cdot3^{x+1}=10\cdot3^{2019}\)
\(2\cdot3\cdot3^{x+1}+4\cdot3^{x+1}=10\cdot3^{2019}\)
\(6\cdot3^{x+1}+4\cdot3^{x+1}=10\cdot3^{2019}\)
\(\left(6+4\right)\cdot3^{x+1}=10\cdot3^{2019}\)
\(10\cdot3^{x+1}=10\cdot3^{2019}\)
\(\Rightarrow x+1=2019\)
\(x=2019-1\)
\(x=2018\)
Vậy x = 2018
Chắc sai =))
\(a,25^3.125^7=\left(5^2\right)^3.\left(5^3\right)^7=5^6.5^{21}=5^{27}\)
\(b,27^5.81^3=\left(3^3\right)^5.\left(3^4\right)^3=3^{15}.3^{12}=3^{27}\)
\(c,9^{15}.3^{30}=\left(3^2\right)^{15}.3^{30}=3^{30}.3^{30}=3^{60}\)
\(d,8^{20}.2^{60}=\left(2^3\right)^{20}.2^{60}=2^{60}.2^{60}=2^{120}\)
127:67=(12:6)7=27
275:81=(33)5:34=315:34=311
183:93=(18:9)3=23=8
L-i-k-e cho mình nha bạn
b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1
b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
c,Ta thấy
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(.....\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
\(9^8:\left(27^3.81^2\right)=3^{16}:\left(3^9.3^8\right)=3^{16}:\left(3^{9+8}\right)=3^{16}:3^{17}=3^{-1}=\frac{1}{3}\)
\(9^8:\left(27^3.81^2\right)\)
\(=3^{16}:\left(3^9.3^8\right)\)
\(=3^{16}:3^{17}\)
\(=\frac{1}{3}\)