Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 44: (SBT/12):
a. (7.35 - 34 + 36) : 34
= (7.35 : 34) + (-34 : 34) + (36 : 34)
= 7 . 3 - 1 + 32
= 21 - 1 + 9
= 29
b. (163 - 642) : 83
= [(2.8)3 - (82)2 ] : 83
= (23 . 83 - 84) : 83
= ( 23 . 83 : 83) + (-84 : 83)
= 23 - 8
= 8 - 8
= 0
a) \(\left(7.3^5-3^4+3^6\right):3^4\)
\(=7.3^5:3^4-3^4:3^4+3^6:3^4\)
\(=7.3^{5-4}-3^{4-4}+3^{6-4}\)
\(=7.3^1-3^0+3^2\)
\(=7.3-1+9\)
\(=21-1+9\)
\(=20+9\)
\(=29\)
b) \(\left(16^3-64^2\right):8^3\)
\(=\left[\left(2^4\right)^3-\left(2^6\right)^2\right]:\left(2^3\right)^3\)
\(=\left(2^{4.3}-2^{6.3}\right):2^{3.3}\)
\(=\left(2^{12}-2^{12}\right):2^9\)
\(=2^{12-9}-2^{12-9}\)
\(=2^3-2^3\)
\(=8-8\)
\(=0\)
Giải:
1) \(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(=\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(=\dfrac{-1}{12}-\dfrac{55}{24}\)
\(=\dfrac{-19}{8}\)
2) \(-1,75-\left(\dfrac{-1}{9}-2\dfrac{1}{18}\right)\)
\(=-\dfrac{7}{4}+\dfrac{1}{9}+2\dfrac{1}{18}\)
\(=-\dfrac{7}{4}+\dfrac{1}{9}+\dfrac{37}{18}\)
\(=\dfrac{5}{12}\)
3) \(-\dfrac{5}{6}-\left(-\dfrac{3}{8}+\dfrac{1}{10}\right)\)
\(=-\dfrac{5}{6}+\dfrac{3}{8}-\dfrac{1}{10}\)
\(=-\dfrac{67}{120}\)
4) \(\dfrac{2}{5}+\left(-\dfrac{4}{3}\right)+\left(-\dfrac{1}{2}\right)\)
\(=\dfrac{2}{5}-\dfrac{4}{3}-\dfrac{1}{2}\)
\(=-\dfrac{43}{30}\)
5) \(\dfrac{3}{12}-\left(\dfrac{6}{15}-\dfrac{3}{10}\right)\)
\(=\dfrac{3}{12}-\dfrac{6}{15}+\dfrac{3}{10}\)
\(=\dfrac{3}{20}\)
6) \(\left(8\dfrac{5}{11}+3\dfrac{5}{8}\right)-3\dfrac{5}{11}\)
\(=8\dfrac{5}{11}+3\dfrac{5}{8}-3\dfrac{5}{11}\)
\(=8+\dfrac{5}{11}+3+\dfrac{5}{8}-3-\dfrac{5}{11}\)
\(=8+\dfrac{5}{8}\)
\(=\dfrac{69}{8}\)
7) \(-\dfrac{1}{4}.13\dfrac{9}{11}-0,25.6\dfrac{2}{11}\)
\(=-\dfrac{1}{4}.13\dfrac{9}{11}-\dfrac{1}{4}.6\dfrac{2}{11}\)
\(=-\dfrac{1}{4}\left(13\dfrac{9}{11}+6\dfrac{2}{11}\right)\)
\(=-\dfrac{1}{4}\left(13+\dfrac{9}{11}+6+\dfrac{2}{11}\right)\)
\(=-\dfrac{1}{4}\left(13+6+1\right)\)
\(=-\dfrac{1}{4}.20=-5\)
8) \(\dfrac{4}{9}:\left(-\dfrac{1}{7}\right)+6\dfrac{5}{9}:\left(-\dfrac{1}{7}\right)\)
\(=\dfrac{4}{9}\left(-7\right)+6\dfrac{5}{9}\left(-7\right)\)
\(=-7\left(\dfrac{4}{9}+6\dfrac{5}{9}\right)\)
\(=-7\left(\dfrac{4}{9}+6+\dfrac{5}{9}\right)\)
\(=-7\left(6+1\right)\)
\(=-7.7=-49\)
Vậy ...
P/s : Phá ngoặc ra là ok :
a )
\(\left[4x-2\left(x-3\right)\right].\left(-3x\right)\)
\(=\left[4x-2x+6\right]\left(-3x\right)\)
\(=-12x^2+6x^2-18x\)
b )
\(3\left[x-3\left(4-2x\right)+8\right]\)
\(=3\left[x-12+6x+8\right]\)
\(=3\left[7x-4\right]\)
\(=21x-12\)
c )
\(5\left(3x^2-4y^3\right)+9\left(2x^2-y^3\right)\)
\(=15x^2-20y^3+18x^2-9y^3\)
\(=33x^2-29y^3\)
d )
\(3x^2\left(2y-1\right)-2x^2\left(5y-3\right)\)
\(=6x^2y-3x^2-10x^2y+6x^2\)
\(=-4x^2y+3x^2\)
\(\frac{-1}{2}+\frac{1}{3}+\frac{2}{4}=\frac{-6}{12}+\frac{4}{12}+\frac{6}{12}\)
= \(\frac{4}{12}\)
a)(7.3^5-3^4+3^6):3^4 (7.(3^5=243)-(3^4=81)+(3^6=729)):(3^4=81)=29
b)(16^3-64^2):8^2 ((16^3=4096)-(64^2=4096)):(8^2=64)=0
c)(3x^2y^2+6y^2):3y lấy 3x^2y^2:3y=x^2y rồi lấy 6y^2:3y=2y cộng 2 kết quả lạ
a)(7.243-81+729):81=29
b)(4096-4096):64=0
c)(9x^2.3x^2y+36y^2):3y=3x^2y+12y
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
a) \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x.x}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}=\frac{0}{x\left(x-3\right)}=0\)
b) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
\(=\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\frac{1\left(3x+2\right)}{\left(3x-2\right)\left(3x+2\right)}-\frac{4\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\frac{-10x+8}{\left(3x-2\right)\left(3x+2\right)}\)
\(\frac{3x+2-12x+2+10x-8}{\left(3x-2\right)\left(3x+2\right)}=\frac{x-4}{\left(3x-2\right)\left(3+2\right)}\)
c) \(\frac{4a^2-3a+5}{a^3-1}-\frac{1-2a}{a^2+a+1}-\frac{6}{a-1}\)
\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{2a-1}{a^2+a+1}-\frac{6}{a-1}\)
\(=\frac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{6\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{4a^2-3a+5+2a^2-2a-a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{-12}{\left(a-1\right)\left(a^2+a+1\right)}\)
d) \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}=\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}=\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x^2-6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{\left(x-3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}=\frac{x-3y}{x\left(x+3y\right)}\)
e) \(\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)
\(=\frac{3x-2}{\left(x-1\right)^2}-\frac{6}{\left(x-1\right)\left(x+1\right)}-\frac{3x-2}{\left(x+1\right)^2}\)
\(=\frac{\left(3x+2\right)\left(x+1\right)^2}{\left(x-1\right)^2\left(x+1\right)^2}-\frac{6\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)}-\frac{\left(3x-2\right)\left(x-1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}\)
\(=\frac{3x^3+6x^2+3x+2x^2+4x+2-6x^2+6-3x^3+6x^2-3x+2x^2-4x+2}{\left(x-1\right)^2\left(x+1\right)^2}\)
\(=\frac{8x^2+10}{\left(x-1\right)^2\left(x+1\right)^2}\)
f) \(\frac{5}{a+1}-\frac{10}{a-\left(a^2+1\right)}-\frac{15}{a^3+1}=\frac{5a^2}{a^3+1}+\frac{10}{a^3+1}-\frac{15}{a^3+1}\)
\(=\frac{5a^2+10-15}{a^3+1}=\frac{5a^2-5}{a^3+1}\)
a) Đk: x \(\ne\)-2
Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)
<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10
<=> -4x - 8 = 5x + 10
<=> -4x - 5x = 10 + 8
<=> -9x = 18
<=> x = -2 (ktm)
=> pt vô nghiệm
b) Đk: x \(\ne\)2; x \(\ne\)-3
Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)
<=> x + 3 - 6x + 12 = -5
<=> -5x = -5 - 15
<=> -5x = -20
<=> x = 4
vậy S = {4}
c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11
Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)
<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)
Vậy S = {0}
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)