Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(x.\left(x^2-2xy+1\right)=x^3-2x^2y+x\)
b) \(\left(2x-3\right).\left(x+2\right)=2x^2+4x-3x-6=2x^2-x-6\)
Bài 2:
a) \(x^3-2x^2+x=x.\left(x^2-2x+1\right)=x.\left(x-1\right)^2\)
b) \(x^2-xy+2x-2y=\left(x^2-xy\right)+\left(2x-2y\right)=x.\left(x-y\right)+2.\left(x-y\right)=\left(x-y\right).\left(x+2\right)\)
c) Đề sai.
a) \(x\left(x^2+5x-3\right)=x^3+5x^2-3x\)
b) \(\left(2x+3\right)\left(x-1\right)=2x^2-2x+3x-3=2x^2-x-3\)
c) \(\left(8x^3y^2-6x^2y^3+2x^2y^2\right):2x^2y^2=4x-3y+1\)
C = ( 100^2 - 99^2 ) + ...( 2^2 -1^2)
C = 199 +195 + 191 + ... + 3
C = ( 199 + 3) + ( 195 + 7 ) + ( 191+ 11) + ....
C = 202 .50 : 2 = 5050
\(R=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(\Leftrightarrow R=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+\)
\(...+\left(2+1\right)\left(2-1\right)\)
\(\Leftrightarrow R=199+195+...+3\)
\(\Leftrightarrow R=\frac{\left(199+3\right)\left[\left(199-3\right):4+1\right]}{2}=5050\)
TL:
\(R=\left(100+99\right)\left(100-99\right)+...+\left(2+1\right)\left(2-1\right)\)1)
=\(199+195+....+3\)
\(=\frac{\left(199+3\right).[\left(199-3\right):4+1]}{2}=5050\)
=>R=5050
Bài này dùng \(a^2-b^2=\left(a+b\right)\left(a-b\right)\) nha em:)
hc tốt
Bạn dùng hằng đẳng thức a2 - b2 = (a - b)(a + b) với mỗi cặp số thì được A = 199 + 195 + 191 + ... + 1.Lúc đó tính được A theo cách tính tổng dãy số cách đều (ở đây giảm đều 4 đơn vị).
Ta có 1002 - 992 = (100 - 99)(100 + 99) = 199
982 - 972 = 195
Tương tự như vậy cái ban đầu sẽ bằng
199 + 195 + 191 +...+ 7 + 3
Dãy này bạn tính được chứ
\(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=199+195+...+3\)
Số lượng số hạng:
\(\left(199-3\right):4+1=50\) (số hạng)
Tổng:
\(\left(3+199\right)\times50:2=5050\)
Lời giải:
$=(100^2-99^2)+(98^2-97^2)+....+(2^2-1^2)$
$=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)$
$=100+99+98+97+...+2+1=100(100+1):2=5050$